Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Development of Gelatin-Based Active Packaging and Its Application in Bread Preservation

    Hui Zheng1,2, Xiaohan Chen2, Li Li2, Dawei Qi1, Jiale Wang1, Jiaying Lou1,*, Wenjun Wang1,*

    Journal of Renewable Materials, Vol.11, No.10, pp. 3693-3709, 2023, DOI:10.32604/jrm.2023.027748 - 10 August 2023

    Abstract The issue of plastic pollution has attracted widespread social attention. Gelatin is valued as a degradable bio-based material, especially as an edible active packaging material. However, the commonly used solution-casting filmforming technology limits the mass production of gelatin films. In order to improve the production efficiency and enhance the commercial value of gelatin films, in this study, fish gelatin (FG) particles were successfully blended with essential oils (EOs) to prepare active films by melt extrusion technique, a common method for commercial plastics, and applied to bread preservation. FG and EOs showed good compatibility with each… More > Graphic Abstract

    Development of Gelatin-Based Active Packaging and Its Application in Bread Preservation

  • Open Access

    ARTICLE

    Melt Extrusion of Environmentally Friendly Poly(L-lactic acid)/Sodium Metabisulfite Films for Antimicrobial Packaging Applications

    Norma M. P. Machado1, Gustavo C. Melo1, Matheus F. Camargo1, Giulianna G. Feijó1, Bruna M. S. Putton2, Clarice Steffens2, Rogerio L. Cansian2, Luiz A. Pessan1, Francys K. V. Moreira1,*

    Journal of Renewable Materials, Vol.9, No.2, pp. 337-349, 2021, DOI:10.32604/jrm.2021.011081 - 15 December 2020

    Abstract Food packaging materials compounded with antimicrobial additives can substantially diminish the incidence of foodborne diseases. Here, poly(L-lactic acid) (PLA) films containing sodium metabisulfite (NaM) were produced by melt extrusion as an attempt to develop a new biodegradable material with antimicrobial properties for packaging. Life cycle assessment (LCA) simulations revealed that the environmental footprints of the PLA film did not change upon NaM addition, and that NaM is more eco-friendly than silver nanoparticles. The PLA/NaM films with NaM content varying from 0.5 to 5.0 wt.% were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and… More >

Displaying 1-10 on page 1 of 2. Per Page