Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (247)
  • Open Access

    REVIEW

    First Principles Calculations for Corrosion in Mg-Li-Al Alloys with Focus on Corrosion Resistance: A Comprehensive Review

    Muhammad Abdullah Khan1, Muhammad Usman2, Yuhong Zhao1,3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1905-1952, 2024, DOI:10.32604/cmc.2024.054691 - 18 November 2024

    Abstract This comprehensive review examines the structural, mechanical, electronic, and thermodynamic properties of Mg-Li-Al alloys, focusing on their corrosion resistance and mechanical performance enhancement. Utilizing first-principles calculations based on Density Functional Theory (DFT) and the quasi-harmonic approximation (QHA), the combined properties of the Mg-Li-Al phase are explored, revealing superior incompressibility, shear resistance, and stiffness compared to individual elements. The review highlights the brittleness of the alloy, supported by B/G ratios, Cauchy pressures, and Poisson’s ratios. Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics, while Mulliken population analysis emphasizes significant electron transfer within the… More >

  • Open Access

    PROCEEDINGS

    Identification of the Anisotropic Thermal-Mechanical Properties of Sheet Metals Using the Virtual Fields Method

    Jiawei Fu1,2,*, Yahui Cai1, Bowen Zhang1, Zengxiang Qi1, Lehua Qi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013007

    Abstract The accurate characterization of the anisotropic thermal-mechanical constitutive properties of structural sheet metals at elevated temperatures and under nonuniform stress/strain states is crucial for the precise hot plastic forming and structural behavior evaluation of an engineering sheet part. Traditional thermal-mechanical testing methods rely on the assumption of states homogeneity, leading to a large number of tests required for the characterization of material anisotropy and nonlinearity at various high temperatures. In this work, a highly efficient identification method is proposed that allows the simultaneous characterization of the anisotropic yielding, strain hardening and elasto-plasticity thermal softening material More >

  • Open Access

    PROCEEDINGS

    Microstructural Evolution, Mechanical Properties and Corrosion Behaviors of Additively Manufactured Biodegradable Zn-Cu Alloys

    Bo Liu1,2,*, Jia Xie2, Gonghua Chen2, Yugang Gong2, Hongliang Yao1, Tiegang Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012904

    Abstract Biodegradable metal implants that meet clinical applications require good mechanical properties and an appropriate biodegradation rate. Additively manufactured (AM) biodegradable zinc (Zn) alloys constitute an essential branch of orthopedic implants because of their moderate degradation and bone-mimicking mechanical properties. This paper investigated the microstructural evolution and corrosion mechanisms of zinc-copper (Zn-Cu) alloys prepared by the laser-powder-bed-fusion (L-PBF) additive manufacturing method. Alloying with Cu significantly increases the ultimate tensile strength (UTS) of unalloyed Zn, but the UTS and ductility of unalloyed Zn and Zn-2Cu decrease with increasing laser energy density. Unalloyed Zn has a dendritic microstructure,… More >

  • Open Access

    PROCEEDINGS

    Modelling and Simulation on Deformation Behaviour and Strengthening Mechanism of Multi-Principal Element Alloys

    Yang Chen1, Baobin Xie1, Weizheng Lu1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011624

    Abstract In order to accurately predict and evaluate the mechanical properties of multi-principal element alloys (MPEAs), some new models and simulation methods need to be developed to solve the problems caused by its unique natural characteristics, such as severe lattice distortion. The existing models are based on the development of low concentration alloys, and cannot be well applied to MPEAs. Here, we develop i) the random field theory informed discrete dislocation dynamics simulations based on high-resolution transmission electron microscopy, to systematically clarify the role of heterogeneous lattice strain on the complex interactions between the dislocation loop… More >

  • Open Access

    PROCEEDINGS

    Mechanical Properties and Failure Modes of 3D-Printed Continuous Fiber-Reinforced Single-Bolt Composite Joints with Curved Paths and Variable Hatch Spaces

    Xin Zhang1,2, Xitao Zheng1,2, Tiantian Yang3, Mingyu Song1,2, Yuanyuan Tian4, Leilei Yan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011277

    Abstract Composite joints are widely used in machinery industries such as aviation, aerospace, and marine, where they transfer main loads as lightweight connectors. Recently, 3D printing with continuous fibers has relieved the required molds in composite manufacturing process and given flexibility to the design of robust composite joints. However, how the curved paths and variable hatch spaces affect the mechanical properties and failure modes of 3D-printed single-bolt composite joints with continuous fibers remains undisclosed. In this study, 3D printing has been introduced to fabricate three types of continuous fiber-reinforced single-bolt composite joints with different paths, including… More >

  • Open Access

    ARTICLE

    Mechanical Behavior of Panels Reinforced with Orthogonal Plant Fabrics: Experimental and Numerical Assessment

    Martha L. Sánchez1,*, G. Capote2

    Journal of Renewable Materials, Vol.12, No.10, pp. 1791-1810, 2024, DOI:10.32604/jrm.2024.055122 - 23 October 2024

    Abstract The construction sector is one of the main sources of pollution, due to high energy consumption and the toxic substances generated during the processing and use of traditional materials. The production of cement, steel, and other conventional materials impacts both ecosystems and human health, increasing the demand for ecological and biodegradable alternatives. In this paper, we analyze the properties of panels made from a combination of plant fibers and castor oil resin, analyzing the viability of their use as construction material. For the research, orthogonal fabrics made with waste plant fibers supplied by a company… More >

  • Open Access

    ARTICLE

    Determination of Physical, Mechanical and Fire Retardancy Properties of Innovative Particleboard Made from Corn Stalk (Zea mays L.) Particles

    Lilik Astari1,2,*, Benoit Belleville1, Kenji Umemura3, Alex Filkov4, Barbara Ozarska1, Robert H. Crawford5

    Journal of Renewable Materials, Vol.12, No.10, pp. 1729-1756, 2024, DOI:10.32604/jrm.2024.054786 - 23 October 2024

    Abstract The demand for particleboard is increasing along with economic and population growth. However, two major barriers to the manufacture of particleboard are a shortage of raw materials (woodchips) and the emission of formaldehyde from conventional adhesives. Agricultural by-products such as corn stalks contain an abundance of renewable lignocellulosic fiber. This study evaluates the effect of citric acid as a natural adhesive and fire retardant addition on the physical, mechanical, and fire retardancy properties of particleboards fabricated from corn stalks. A cost-effective and inorganic salt, calcium carbonate, was tested to enhance the fire retardancy. Ammonium dihydrogen… More > Graphic Abstract

    Determination of Physical, Mechanical and Fire Retardancy Properties of Innovative Particleboard Made from Corn Stalk (<i>Zea mays</i> L.) Particles

  • Open Access

    ARTICLE

    Chemically Modified Sugarcane Bagasse for Innovative Bio-Composites. Part One: Production and Physico-Mechanical Properties

    Peyman Ahmadi1,*, Davood Efhamisisi1,*, Marie-France Thévenon2,3, Hamid Zarea Hosseinabadi1, Reza Oladi1, Jean Gerard2,3

    Journal of Renewable Materials, Vol.12, No.10, pp. 1715-1728, 2024, DOI:10.32604/jrm.2024.054076 - 23 October 2024

    Abstract Sugarcane bagasse is an agro-waste that could replace timber resources for the production of bio-composites. Composite boards such as particleboard offer an issue for the use and recycling of poor quality timber, and these engineered products can overcome some solid wood limitations such as heterogeneity and dimension. Bagasse offers an alternative to wood chips for particleboard production but present some disadvantages as well, such as poor physico-mechanical properties. To address these issues, bagasse fibers were treated with an innovative natural resin formulated with tannin and furfural. Impregnated particles with different concentrations of resin (5%, 10%,… More > Graphic Abstract

    Chemically Modified Sugarcane Bagasse for Innovative Bio-Composites. Part One: Production and Physico-Mechanical Properties

  • Open Access

    PROCEEDINGS

    The Simulation of Microstructures and Mechanical Properties in Wire Arc Additive Manufacturing

    Zhao Zhang1,*, Xiang Gao1, Yifei Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012115

    Abstract Wire arc additive manufacturing (WAAM) reveals its high efficiency for the fabrications in comparison with laser additive manufacturing. To reveal the relationship between arc settings and the microstructural evolutions, phase field model and Monte Carlo model are established for the simulation of the microstructural evolutions and dislocation dynamics model is established for the simulation of the anisotropic properties in WAAM. Numerical results are compared with Experiments to validate the proposed models. The length/width ratio of the formed grains in solidification becomes smaller when the scanning speed is decreased or the input powder is increased. The… More >

  • Open Access

    PROCEEDINGS

    Mechanical Properties of CP Ti Processed via a High-Precision Laser Powder Bed Fusion Process

    Hui Liu1, Xu Song1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011362

    Abstract Because of its higher specific strength and better biocompatibility, commercially pure titanium (CP Ti) is widely used for product fabrication in the aerospace, medical, and other industries. Currently, different ways are adopted to strengthen CP Ti, such as solid-solution strengthening using oxygen or adding metal components to form alloys; however, the introduction of oxygen, other gases, or alloying elements reduces the corrosion resistance and biocompatibility. Herein, CP Ti with a low oxygen content was used to fabricate samples via a high-precision laser powder bed fusion process. Smaller laser beam diameter and thinner layer thickness lead More >

Displaying 1-10 on page 1 of 247. Per Page