Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    Peridynamic Simulation of Pellet-Clad Mechanical Interaction in Nuclear Fuel Rods

    Qiqing Liu1, Yin Yu1, Y.L. Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09220

    Abstract The thermomechanical response and potential cracking in nuclear fuel rods are extremely important for nuclear safety analysis. The Pellet-Clad Mechanical Interaction (PCMI) is a significant factor for the thermomechanical behaviors of pellet and clad. This study presents a PCMI model based on ordinary statebased peridynamic (OSB-PD) theory, which considering the heat transfer through the gap and contact heat transfer between pellet and clad. The two-dimensional (2D) models are constructed through irregular nonuniform discretization. The pellet model includes the random variability of the critical stretch of each bond based on normal distribution. The contact model with… More >

  • Open Access

    ARTICLE

    Failure Patterns and Mechanisms of Hydraulic Fracture Propagation Behavior in the Presence of Naturally Cemented Fractures

    Daobing Wang1, Fang Shi2,*, Hao Qin1,*, Dongliang Sun1, Bo Yu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 891-914, 2021, DOI:10.32604/cmes.2021.014206 - 19 February 2021

    Abstract In this study, we use the extended finite element method (XFEM) with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures. In the proposed numerical model, the lubrication equation is adopted to describe the fluid flow within fractures. The fluid-solid coupling systems of the hydraulic fracturing problem are solved using the Newton-Raphson method. The energy release rate criterion is used to determine the cross/arrest behavior between a hydraulic fracture (HF) and a cemented natural fracture (NF). The failure patterns and mechanisms of crack propagation at the… More >

  • Open Access

    ABSTRACT

    Markov approach to analysis of mechanical interaction of surfaces during friction

    Yu.A. Goritskiy1, D.G. Tigetov1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.14, No.4, pp. 99-102, 2010, DOI:10.3970/icces.2010.014.099

    Abstract It is well-known that process of friction depends immensely on the surface roughness. Also, surfaces change while in friction. Roughness change is influenced by many factors such as shape of asperities, physical characteristics of materials, load, sliding velocity, lubricant and others. It was shown experimentally that roughness reaches a steady form (known as ``equilibrium roughness'') while running-in process. It is ``equilibrium roughness'' that determines a stationary friction mode. More >

Displaying 1-10 on page 1 of 3. Per Page