Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Numerical Investigation of Porosity and Aggregate Volume Ratio Effects on the Mechanical Behavior of Lightweight Aggregate Concrete

    Safwan Al-sayed1, Xi Wang1, Yijiang Peng1,*, Esraa Hyarat2, Ahmad Ali AlZubi3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074068 - 12 January 2026

    Abstract In modern construction, Lightweight Aggregate Concrete (LWAC) has been recognized as a vital material of concern because of its unique properties, such as reduced density and improved thermal insulation. Despite the extensive knowledge regarding its macroscopic properties, there is a wide knowledge gap in understanding the influence of microscale parameters like aggregate porosity and volume ratio on the mechanical response of LWAC. This study aims to bridge this knowledge gap, spurred by the need to enhance the predictability and applicability of LWAC in various construction environments. With the help of advanced numerical methods, including the… More >

  • Open Access

    ARTICLE

    Research on Deformation Mechanism of Rolled AZ31B Magnesium Alloy during Tension by VPSC Model Computational Simulation

    Xun Chen1, Jinbao Lin1,2,*, Zai Wang1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072495 - 12 January 2026

    Abstract This work investigates the effects of deformation mechanisms on the mechanical properties and anisotropy of rolled AZ31B magnesium alloy under uniaxial tension, combining experimental characterization with Visco-Plastic Self Consistent (VPSC) modeling. The research focuses particularly on anisotropic mechanical responses along transverse direction (TD) and rolling direction (RD). Experimental measurements and computational simulations consistently demonstrate that prismatic <a> slip activation significantly reduces the strain hardening rate during the initial stage of tensile deformation. By suppressing the activation of specific deformation mechanisms along RD and TD, the tensile mechanical behavior of the magnesium alloy was further investigated. More >

  • Open Access

    PROCEEDINGS

    Nonlinear Variation of Chord Modulus of Mild Steel During Cyclic Loading-Unloading at Different Temperatures

    Liwen Guan1, Xiaoteng Wang2,*, Tang Biao2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-4, 2025, DOI:10.32604/icces.2025.012534

    Abstract By using the continuous cyclic loading-unloading tensile test method, the nonlinear variation behavior of the chord modulus of mild steel under different temperature conditions was systematically investigated, and the corresponding relationship between plastic strain and chord modulus during the cyclic loading-unloading process was clarified. Through the analysis of test data, the variation trends and quantitative corresponding models of plastic strain and chord modulus at different temperatures were established. The research results show that under constant temperature conditions, as the plastic strain increases to 10%, the chord modulus attenuation process presents a significant two-stage characteristic -… More >

  • Open Access

    ARTICLE

    Dynamic Compressive Behavior and Stress Wave Attenuation Characteristics of Ti-6Al-4V Lattice Structure

    Shuai Zhang1, Xin Lai1,*, Haiyan Niu2, Lisheng Liu1,3, Shifu Wang2, Jinyong Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 739-762, 2025, DOI:10.32604/cmes.2025.067442 - 31 July 2025

    Abstract This study investigates the dynamic compressive behavior of three periodic lattice structures fabricated from Ti-6Al-4V titanium alloy, each with distinct topologies: simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC). Dynamic compression experiments were conducted using a Split Hopkinson Pressure Bar (SHPB) system, complemented by high-speed imaging to capture real-time deformation and failure mechanisms under impact loading. The influence of cell topology, relative density, and strain rate on dynamic mechanical properties, failure behavior, and stress wave propagation was systematically examined. Finite element modeling was performed, and the simulated results showed good agreement with experimental… More >

  • Open Access

    ARTICLE

    Dynamic Response of Bridge Pile Foundations under Pile-Soil-Fault Interaction in Seismic Areas

    Yujie Li1, Zhongju Feng1,*, Fuchun Wang1, Jiang Guan2, Xiaoqian Ma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1549-1573, 2025, DOI:10.32604/cmes.2025.064785 - 30 May 2025

    Abstract To study the dynamic response rules of pile foundations of mega-bridges over faults in strong seismic areas, a finite element model of the pile foundation-soil-fault interaction of the Haiwen Bridge is established. The 0.2–0.6 g peak acceleration of the 5010 seismic waves is input to study the effect of the seismic wave of different intensities and the distance changes between the fault and the pile foundation on the dynamic response of the pile body. The results show that the soil layer covering the bedrock amplifies the peak pile acceleration, and the amplifying effect decreases with… More >

  • Open Access

    REVIEW

    Advanced Computational Modeling and Mechanical Behavior Analysis of Multi-Directional Functionally Graded Nanostructures: A Comprehensive Review

    Akash Kumar Gartia, S. Chakraverty*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2405-2455, 2025, DOI:10.32604/cmes.2025.061039 - 03 March 2025

    Abstract This review explores multi-directional functionally graded (MDFG) nanostructures, focusing on their material characteristics, modeling approaches, and mechanical behavior. It starts by classifying different types of functionally graded (FG) materials such as conventional, axial, bi-directional, and tri-directional, and the material distribution models like power-law, exponential, trigonometric, polynomial functions, etc. It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity, nonlocal strain gradient, modified couple stress, and consistent couple stress theories, which are essential to predict the behavior of structures at small scales. The review covers the mechanical analysis of MDFG nanostructures in nanobeams,… More > Graphic Abstract

    Advanced Computational Modeling and Mechanical Behavior Analysis of Multi-Directional Functionally Graded Nanostructures: A Comprehensive Review

  • Open Access

    PROCEEDINGS

    Theoretical Studies on Mechanical Behavior of Vesicles with Confined Filaments

    Xin Yi1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012558

    Abstract The intricate packing of elastic filaments, including cytoskeletal microtubules, actin filaments, and artificial nanotubes, is fundamental to understanding a plethora of cellular functions and their applications in cellular engineering. Through rigorous theoretical analysis, we investigate the packing dynamics of filaments within vesicles and explore the axial stretching of the vesicle–filament system. Our examination reveals how the interplay of stiffness and size ratios between filaments and vesicles drives transitions in vesicle configurations, prompting filament bending or coiling. We construct morphological phase diagrams to elucidate these transitional phenomena, highlighting the influence of pressurized vesicles in enhancing resistance More >

  • Open Access

    ARTICLE

    Mechanical Behavior of Panels Reinforced with Orthogonal Plant Fabrics: Experimental and Numerical Assessment

    Martha L. Sánchez1,*, G. Capote2

    Journal of Renewable Materials, Vol.12, No.10, pp. 1791-1810, 2024, DOI:10.32604/jrm.2024.055122 - 23 October 2024

    Abstract The construction sector is one of the main sources of pollution, due to high energy consumption and the toxic substances generated during the processing and use of traditional materials. The production of cement, steel, and other conventional materials impacts both ecosystems and human health, increasing the demand for ecological and biodegradable alternatives. In this paper, we analyze the properties of panels made from a combination of plant fibers and castor oil resin, analyzing the viability of their use as construction material. For the research, orthogonal fabrics made with waste plant fibers supplied by a company… More >

  • Open Access

    ARTICLE

    Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning

    Xingzi Yang1, Wei Gao2, Xiaodu Wang1, Xiaowei Zeng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1299-1313, 2024, DOI:10.32604/cmes.2024.049371 - 20 May 2024

    Abstract The bioinspired nacre or bone structure represents a remarkable example of tough, strong, lightweight, and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials. The bioinspired structure consists of hard grains and soft material interfaces. While the material interface has a very low volume percentage, its property has the ability to determine the bulk material response. Machine learning technology nowadays is widely used in material science. A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite. This model More >

  • Open Access

    ARTICLE

    Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm

    Guilin Wu1,2, Shenghua Huang1, Tingting Liu3, Zhuoni Yang3, Yuesong Wu2, Guihong Wei1, Peng Yu1,*, Qilin Zhang4, Jun Feng4, Bo Zeng5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2709-2725, 2024, DOI:10.32604/cmes.2023.031399 - 15 December 2023

    Abstract Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life and prognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice. However, esophageal stents of different types and parameters have varying adaptability and effectiveness for patients, and they need to be individually selected according to the patient’s specific situation. The purpose of this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3D printing technology to fabricate esophageal stents with different ratios of… More >

Displaying 1-10 on page 1 of 34. Per Page