Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

    Zhaoqiang Wang1, Fuyin Ni2,*

    Energy Engineering, Vol.121, No.12, pp. 3779-3799, 2024, DOI:10.32604/ee.2024.055535 - 22 November 2024

    Abstract Under the partial shading conditions (PSC) of Photovoltaic (PV) modules in a PV hybrid system, the power output curve exhibits multiple peaks. This often causes traditional maximum power point tracking (MPPT) methods to fall into local optima and fail to find the global optimum. To address this issue, a composite MPPT algorithm is proposed. It combines the improved kepler optimization algorithm (IKOA) with the optimized variable-step perturb and observe (OIP&O). The update probabilities, planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized. This adaptation meets the varying needs of the initial… More > Graphic Abstract

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

  • Open Access

    REVIEW

    Maximum Power Point Tracking Technology for PV Systems: Current Status and Perspectives

    Bo Yang1,2, Rui Xie1, Zhengxun Guo3,4,*

    Energy Engineering, Vol.121, No.8, pp. 2009-2022, 2024, DOI:10.32604/ee.2024.049423 - 19 July 2024

    Abstract Maximum power point tracking (MPPT) technology plays a key role in improving the energy conversion efficiency of photovoltaic (PV) systems, especially when multiple local maximum power points (LMPPs) occur under partial shading conditions (PSC). It is necessary to modify the operating point efficiently and accurately with the help of MPPT technology to maximize the collected power. Even though a lot of research has been carried out and impressive progress achieved for MPPT technology, it still faces some challenges and dilemmas. Firstly, the mathematical model established for PV cells is not precise enough. Second, the existing… More > Graphic Abstract

    Maximum Power Point Tracking Technology for PV Systems: Current Status and Perspectives

  • Open Access

    ARTICLE

    Research on the MPPT of Photovoltaic Power Generation Based on Improved WOA and P&O under Partial Shading Conditions

    Jian Zhong, Lei Zhang*, Ling Qin

    Energy Engineering, Vol.121, No.4, pp. 951-971, 2024, DOI:10.32604/ee.2023.041433 - 26 March 2024

    Abstract Partial shading conditions (PSCs) caused by uneven illumination become one of the most common problems in photovoltaic (PV) systems, which can make the PV power-voltage (P-V) characteristics curve show multi-peaks. Traditional maximum power point tracking (MPPT) methods have shortcomings in tracking to the global maximum power point (GMPP), resulting in a dramatic decrease in output power. In order to solve the above problems, intelligent algorithms are used in MPPT. However, the existing intelligent algorithms have some disadvantages, such as slow convergence speed and large search oscillation. Therefore, an improved whale algorithm (IWOA) combined with the More >

  • Open Access

    ARTICLE

    A New Flower Pollination Algorithm Strategy for MPPT of Partially Shaded Photovoltaic Arrays

    Muhannad J. Alshareef*

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 297-313, 2023, DOI:10.32604/iasc.2023.046722 - 27 February 2024

    Abstract Photovoltaic (PV) systems utilize maximum power point tracking (MPPT) controllers to optimize power output amidst varying environmental conditions. However, the presence of multiple peaks resulting from partial shading poses a challenge to the tracking operation. Under partial shade conditions, the global maximum power point (GMPP) may be missed by most traditional maximum power point tracker. The flower pollination algorithm (FPA) and particle swarm optimization (PSO) are two examples of metaheuristic techniques that can be used to solve the issue of failing to track the GMPP. This paper discusses and resolves all issues associated with using… More >

  • Open Access

    ARTICLE

    Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System

    N. Kanagaraj1,*, Obaid Aldosari1, M. Ramasamy2, M. Vijayakumar2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2291-2306, 2023, DOI:10.32604/iasc.2023.039101 - 21 June 2023

    Abstract The generation of electricity, considering environmental and economic factors is one of the most important challenges of recent years. In this article, a thermoelectric generator (TEG) is proposed to use the thermal energy of an electric water heater (EWH) to generate electricity independently. To improve the energy conversion efficiency of the TEG, a fuzzy logic controller (FLC)-based perturb & observe (P&O) type maximum power point tracking (MPPT) control algorithm is used in this study. An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers. Also, a… More >

  • Open Access

    ARTICLE

    Spotted Hyena-Bat Optimized Extreme Learning Machine for Solar Power Extraction

    K. Madumathi1,*, S. Chandrasekar2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1821-1836, 2023, DOI:10.32604/csse.2023.029561 - 03 November 2022

    Abstract Artificial intelligence, machine learning and deep learning algorithms have been widely used for Maximum Power Point Tracking (MPPT) in solar systems. In the traditional MPPT strategies, following of worldwide Global Maximum Power Point (GMPP) under incomplete concealing conditions stay overwhelming assignment and tracks different nearby greatest power focuses under halfway concealing conditions. The advent of artificial intelligence in MPPT has guaranteed of accurate following of GMPP while expanding the significant performance and efficiency of MPPT under Partial Shading Conditions (PSC). Still the selection of an efficient learning based MPPT is complex because each model has… More >

  • Open Access

    ARTICLE

    Research on the MPPT of Photovoltaic Power Generation Based on the CSA-INC Algorithm

    Tao Hou1, Shan Wang1,2,*

    Energy Engineering, Vol.120, No.1, pp. 87-106, 2023, DOI:10.32604/ee.2022.022122 - 27 October 2022

    Abstract The existing Maximum Power Point Tracking (MPPT) method has low tracking efficiency and poor stability. It is easy to fall into the Local Maximum Power Point (LMPP) in Partial Shading Condition (PSC), resulting in the degradation of output power quality and efficiency. It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms, and their performance in tracking the Global Maximum Power Point (GMPP) varies. Thus, a Cuckoo search algorithm (CSA) combined with the Incremental conductance Algorithm (INC) is proposed (CSA-INC) is put forward for the MPPT method of photovoltaic power generation. The More > Graphic Abstract

    Research on the MPPT of Photovoltaic Power Generation Based on the CSA-INC Algorithm

  • Open Access

    ARTICLE

    Optimization of Adaptive Fuzzy Controller for Maximum Power Point Tracking Using Whale Algorithm

    Mehrdad Ahmadi Kamarposhti1,*, Hassan Shokouhandeh2, Ilhami Colak3, Kei Eguchi4

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5041-5061, 2022, DOI:10.32604/cmc.2022.031583 - 28 July 2022

    Abstract The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector. The capability of online fuzzy tracking systems is maximum power, resistance to radiation and temperature changes, and no need for external sensors to measure radiation intensity and temperature. However, the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing. The controller used in the maximum power point… More >

  • Open Access

    ARTICLE

    Evaluation of On-Line MPPT Algorithms for PV-Based Battery Storage Systems

    Belqasem Aljafari1, Eydhah Almatrafi2,3,4, Sudhakar Babu Thanikanti5, Sara A. Ibrahim6, Mohamed A. Enany6,*, Marwa M. Ahmed7

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3595-3611, 2022, DOI:10.32604/cmc.2022.030733 - 16 June 2022

    Abstract This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking (MPPT) techniques for Photo-Voltaic based Battery Storage Systems (PV-BSS). To have a full comparative study in terms of the dynamic response, battery state of charge (SOC), and oscillations around the Maximum Power Point (MPP) of the PV-BSS to variations in climate conditions, these techniques are simulated in Matlab/Simulink. The introduced methodologies are classified into two types; the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb &… More >

  • Open Access

    ARTICLE

    Optimum Tuning of Photovoltaic System Via Hybrid Maximum Power Point Tracking Technique

    M. Nisha1,*, M. Germin Nisha2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1399-1413, 2022, DOI:10.32604/iasc.2022.024482 - 03 May 2022

    Abstract A new methodology is used in this paper, for the optimal tuning of Photovoltaic (PV) by integrating the hybrid Maximum Power Point Tracking (MPPT) algorithms is proposed. The suggested hybrid MPPT algorithms can raise the performance of PV systems under partial shade conditions. It attempts to address the primary research issues in partial shading conditions in PV systems caused by clouds, trees, dirt, and dust. The proposed system computes MPPT utilizing an innovative adaptive model-based approach. In order to manage the input voltage at the Maximum PowerPoint, the MPPT algorithm changes the duty cycle of… More >

Displaying 1-10 on page 1 of 15. Per Page