Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ABSTRACT

    Effects of Three-Dimensional Stiffness on the Proliferation, Stemness And Invasion of Hepatic Cancer Stem Cells

    Mengyue Wang1, Runze Zhao1, Fan Feng1, Tingting Xia1,*, Li Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 130-130, 2019, DOI:10.32604/mcb.2019.07154

    Abstract Hepatocellular carcinoma (HCC) is the third most common cancer in the world. Previous studies have shown that hard matrix promotes the proliferation of liver tumor cells. However, the role of matrix stiffness on hepatic cancer stem cells (HCSCs) is still unclear. Three-dimensional hydrogels with different stiffness were used to mimic the normal liver tissue (4kPa) and cancerous liver tissue (26kPa) stiffness. The proliferation, stemness and invasion properties of HCSCs under 3D different stiffness were detected. METHOD: HSCSs were screened and cultured by enrichment method, and the effect of matrix stiffness on HCSCs was studied by… More >

  • Open Access

    ABSTRACT

    Matrix Stiffness Promotes Hepatoma Cell Glycolysis and Migration Through YAP-Mediated Mechanotransduction

    Qiuping Liu1, Guanbin Song1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 127-127, 2019, DOI:10.32604/mcb.2019.07105

    Abstract Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal malignancies worldwide. Increased matrix stiffness of extracellular matrix (ECM) is commonly associated with HCC. During tumour formation and expansion, increasing glucose metabolism is necessary for unrestricted growth of tumour cells. Yet, the correlation between matrix stiffness and glucose metabolism in the development of HCC remains unknown. In this study, we aim to investigate the effect of matrix stiffness on glucose metabolism and migration of MHCC97L and HepG2 hepatoma cells, and explore the mechanotransduction involved in this process. Polyacrylamide hydrogels with stiffness gradients of 6,… More >

Displaying 1-10 on page 1 of 2. Per Page