Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (128)
  • Open Access

    ARTICLE

    Aggravation of Cancer, Heart Diseases and Diabetes Subsequent to COVID-19 Lockdown via Mathematical Modeling

    Fatma Nese Efil1, Sania Qureshi1,2,3, Nezihal Gokbulut1,4, Kamyar Hosseini1,3, Evren Hincal1,4,*, Amanullah Soomro2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 485-512, 2024, DOI:10.32604/cmes.2024.047907

    Abstract The global population has been and will continue to be severely impacted by the COVID-19 epidemic. The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal conditions such as cancer, heart disease, and diabetes. Here, using ordinary differential equations (ODEs), two mathematical models are developed to explain the association between COVID-19 and cancer and between COVID-19 and diabetes and heart disease. After that, we highlight the stability assessments that can be applied to these models. Sensitivity analysis is used to examine how changes in certain factors impact different aspects… More >

  • Open Access

    ARTICLE

    Mathematical Modelling and Simulations of Active Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 125-139, 2023, DOI:10.32381/JPM.2023.40.3-4.1

    Abstract A one dimensional isothermal model is proposed by modelling the kinetics of methanol transport at anode flow channel (AFC), membrane and cathode catalyst layer of direct methanol fuel cell (DMFC). Analytical model is proposed to predict methanol cross-over rate through the electrolyte membrane and cell performance. The model presented in this paper considered methanol diffusion and electrochemical oxidation at the anode and cathode channels. The analytical solution of the proposed model was simulated in a MATLAB environment to obtain the polarization curve and leakage current. The effect of methanol concentration on cell voltage and leakage current is studied. The methanol… More >

  • Open Access

    ARTICLE

    Investigative Review of Design Techniques of Parabolic Trough Solar Collectors

    Roba Tarek AbdelFatah*, Irene S. Fahim, Mohamed Mahran Kasem

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 317-339, 2024, DOI:10.32604/fhmt.2023.044706

    Abstract Parabolic trough solar collectors (PTCs) are among the most cost-efficient solar thermal technologies. They have several applications, such as feed heaters, boilers, steam generators, and electricity generators. A PTC is a concentrated solar power system that uses parabolic reflectors to focus sunlight onto a tube filled with heat-transfer fluid. PTCs performance can be investigated using optical and thermal mathematical models. These models calculate the amount of energy entering the receiver, the amount of usable collected energy, and the amount of heat loss due to convection and radiation. There are several methods and configurations that have been developed so far; however,… More > Graphic Abstract

    Investigative Review of Design Techniques of Parabolic Trough Solar Collectors

  • Open Access

    ARTICLE

    A Study on the Transmission Dynamics of the Omicron Variant of COVID-19 Using Nonlinear Mathematical Models

    S. Dickson1, S. Padmasekaran1, Pushpendra Kumar2,*, Kottakkaran Sooppy Nisar3, Hamidreza Marasi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2265-2287, 2024, DOI:10.32604/cmes.2023.030286

    Abstract This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models, considering the delay in converting susceptible individuals into infected ones. The significant delays eventually resulted in the pandemic’s containment. To ensure the safety of the host population, this concept integrates quarantine and the COVID-19 vaccine. We investigate the stability of the proposed models. The fundamental reproduction number influences stability conditions. According to our findings, asymptomatic cases considerably impact the prevalence of Omicron infection in the community. The real data of the Omicron variant from Chennai, Tamil Nadu, India, is used to validate the… More >

  • Open Access

    ARTICLE

    Using Improved Particle Swarm Optimization Algorithm for Location Problem of Drone Logistics Hub

    Li Zheng, Gang Xu*, Wenbin Chen

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 935-957, 2024, DOI:10.32604/cmc.2023.046006

    Abstract Drone logistics is a novel method of distribution that will become prevalent. The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption, resulting in cost savings for the company’s transportation operations. Logistics firms must discern the ideal location for establishing a logistics hub, which is challenging due to the simplicity of existing models and the intricate delivery factors. To simulate the drone logistics environment, this study presents a new mathematical model. The model not only retains the aspects of the current models, but also considers the degree of transportation difficulty from the logistics hub to… More >

  • Open Access

    ARTICLE

    EX VIVO LIVER TISSUE RADIOFREQUENCY THERMAL ABLATION: IR MEASUREMENTS AND SIMULATIONS

    Edoardo Gino Macchi* , Giovanni Braschi, Mario Gallati

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-8, 2014, DOI:10.5098/hmt.5.20

    Abstract Radiofrequency thermal ablation (RFTA) is a medical procedure currently widely adopted for liver tumors treatment. Its outcome is strongly influenced by temperature distribution near the RF applicator therefore continuous measurements are required both to validate RFTA numerical models and to better control the outcome of the procedure. The space-time evolution of the thermal field during RFTA on ex vivo porcine liver tissue has been measured by infrared thermal imaging in different experimental setups. A three-dimensional simulation of the whole experiment reproduces all the features of the thermal field measurements and validates the proposed measurement methodology. More >

  • Open Access

    ARTICLE

    A Mathematical Approach for Generating a Highly Non-Linear Substitution Box Using Quadratic Fractional Transformation

    Abid Mahboob1, Muhammad Asif2, Rana Muhammad Zulqarnain3,*, Imran Saddique4, Hijaz Ahmad5, Sameh Askar6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2565-2578, 2023, DOI:10.32604/cmc.2023.040371

    Abstract Nowadays, one of the most important difficulties is the protection and privacy of confidential data. To address these problems, numerous organizations rely on the use of cryptographic techniques to secure data from illegal activities and assaults. Modern cryptographic ciphers use the non-linear component of block cipher to ensure the robust encryption process and lawful decoding of plain data during the decryption phase. For the designing of a secure substitution box (S-box), non-linearity (NL) which is an algebraic property of the S-box has great importance. Consequently, the main focus of cryptographers is to achieve the S-box with a high value of… More >

  • Open Access

    ARTICLE

    Mathematical Study of MHD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet: Slip Effects Phenomena

    Pudhari Srilatha1, Ahmed M. Hassan2, B. Shankar Goud3,*, E. Ranjit Kumar4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 539-562, 2023, DOI:10.32604/fhmt.2023.043023

    Abstract The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet. In addition to this, the impacts of thermal radiation and viscous dissipation are taken into account. With the use of various computing strategies, numerical results have been produced. Similarity transformation was utilized in order to convert the partial differential equations (PDEs) that regulated energy, rotational momentum, concentration, and momentum into ordinary differential equations (ODEs). As compared to earlier published research, MATLAB inbuilt solver solution… More > Graphic Abstract

    Mathematical Study of MHD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet: Slip Effects Phenomena

  • Open Access

    ARTICLE

    Fractal Fractional Order Operators in Computational Techniques for Mathematical Models in Epidemiology

    Muhammad Farman1,2,4, Ali Akgül3,9,*, Mir Sajjad Hashemi5, Liliana Guran6,7, Amelia Bucur8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1385-1403, 2024, DOI:10.32604/cmes.2023.028803

    Abstract New fractional operators, the COVID-19 model has been studied in this paper. By using different numerical techniques and the time fractional parameters, the mechanical characteristics of the fractional order model are identified. The uniqueness and existence have been established. The model’s Ulam-Hyers stability analysis has been found. In order to justify the theoretical results, numerical simulations are carried out for the presented method in the range of fractional order to show the implications of fractional and fractal orders. We applied very effective numerical techniques to obtain the solutions of the model and simulations. Also, we present conditions of existence for… More >

  • Open Access

    ARTICLE

    Simulation Analysis of New Energy Vehicle Engine Cooling System Based on K-E Turbulent Flow Mathematical Model

    Hongyu Mu1,2,*, Yinyan Wang1, Chuanlei Yang1, Hong Teng2, Xingtian Zhao2, Hongquan Lu2, Dechun Wang2, Shiyang Hao2, Xiaolong Zhang2, Yan Jin2

    Energy Engineering, Vol.120, No.10, pp. 2325-2342, 2023, DOI:10.32604/ee.2023.029360

    Abstract New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles. The new energy engine cooling technology is critical in the design of new energy vehicles. This paper used one-and three-way joint simulation methods to simulate the refrigeration system of new energy vehicles. Firstly, a k-ε turbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics. Then, the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions. This paper proposes an optimization scheme for new… More > Graphic Abstract

    Simulation Analysis of New Energy Vehicle Engine Cooling System Based on K-E Turbulent Flow Mathematical Model

Displaying 1-10 on page 1 of 128. Per Page