Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (501)
  • Open Access

    COMMENTARY

    A commentary on the interplay of biomaterials and cell adhesion: new insights in bone tissue regeneration

    A. NOEL GRAVINA1,2, NOELIA D´ELÍA1,2, LUCIANO A. BENEDINI2,3,*, PAULA MESSINA1,2

    BIOCELL, Vol.48, No.11, pp. 1517-1520, 2024, DOI:10.32604/biocell.2024.055513 - 07 November 2024

    Abstract This article navigates the relationship between biomaterials and osteogenic cell adhesion, highlighting the importance of mimicking the physiological response for bone tissue regeneration. Within this spirit is an initial description of the interaction between osteoblasts and osteoprogenitor cells with the extracellular matrix, explaining the leading role of integrins and cadherins in cell adhesion, and the intracellular signaling pathways elicited. Additionally, there is a focus on the strategies of advanced biomaterials that foster osteogenesis by replicating the native environment, taking advantage of these known specific signaling pathways. The final remarks lay on the need for careful More >

  • Open Access

    PROCEEDINGS

    Wave and Particle Manipulation by Acoustic and Electromagnetic Metamaterials

    Xiaobing Cai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012376

    Abstract Acoustic and Electromagnetic Metamaterials/Metasurface have demonstrated various fascinating functionalities in wave manipulation. However, further employment of the manipulated wave for controlling the movement of discrete particle matter is not so widely investigated. Particle matter, also known as granular matter, granular material etc, is the most common form of matter in nature, and so the effective control of granular matter is closely related to engineering and daily life. The use of sound waves and electromagnetic waves to manipulate the granular matter has been widely used in printing, environmental protection, pharmaceuticals and many other fields. However, in… More >

  • Open Access

    PROCEEDINGS

    Multiscale Mechanics Design of Biodegradable Nano-Architected Materials: Toward a Sustainable Future

    Yuanzhen Hou1, YinBo Zhu1, Heng-an Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011353

    Abstract Traditional materials are emerging increasingly severe problems such as environmental pollution, non-renewability, and resource waste. As the most abundant natural biomass in nature, nanocellulose materials are expected to become a new generation of green, biodegradable, high-performance structural materials and contribute to sustainable development. Starting from the intrinsic relationship between hydrogen bonding network and microstructure deformation in nanocellulose, we performs the bottom-up multiscale mechanics methods, combing theoretical modeling, experimental characterization and material preparation, to reveal the physical mechanism and key characteristic parameters of the microstructure-regulated mechanical behaviors of nanocellulose materials, further establishing the cross-scale relationship between… More >

  • Open Access

    PROCEEDINGS

    In-Situ Process Monitoring and Quality Evaluation for Fused Deposition Modeling with Foaming Materials

    Zhaowei Zhou1, Kaicheng Ruan1, Donghua Zhao1, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011376

    Abstract Fused deposition modeling (FDM) with foaming materials offers the capability to generate internal porous structures through in-situ foaming, imparting favorable characteristics such as weight reduction, shock absorption, thermal insulation, and sound insulation to printed objects. However, the process planning for this technology presents challenges due to the difficulty in accurately controlling the foaming rate, stemming from a complex underlying mechanism that remains poorly understood. This study introduces a multi-sensor platform for FDM with foaming materials, facilitating in-situ process monitoring of temperature field information during material modeling and quality evaluation of printed objects, i.e., abnormal foaming… More >

  • Open Access

    PROCEEDINGS

    Mesoscopic Modelling and Optimization of Additive-Manufactured Microlattice Materials for Energy Absorption

    Lijun Xiao1,*, Weidong Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010981

    Abstract Additively-manufactured microlattice materials have attracted much attention due to their outstanding mechanical properties and energy absorption capacity. Considering the high cost of 3D printing, numerical simulation has become the most common approach for predicting and optimizing the mechanical performance of micro-lattice materials. The current study provides an efficient method to incorporate the printing process induced geometric defects in the lattice models. Numerical simulations are performed to precisely predict the mechanical response of the printed microlattice materials under quasi-static and dynamic loadings. Furthermore, the microlattice structures are graphically represented based on their mesoscopic structural characteristics. Accordingly, More >

  • Open Access

    ARTICLE

    Mechanical Behavior of Panels Reinforced with Orthogonal Plant Fabrics: Experimental and Numerical Assessment

    Martha L. Sánchez1,*, G. Capote2

    Journal of Renewable Materials, Vol.12, No.10, pp. 1791-1810, 2024, DOI:10.32604/jrm.2024.055122 - 23 October 2024

    Abstract The construction sector is one of the main sources of pollution, due to high energy consumption and the toxic substances generated during the processing and use of traditional materials. The production of cement, steel, and other conventional materials impacts both ecosystems and human health, increasing the demand for ecological and biodegradable alternatives. In this paper, we analyze the properties of panels made from a combination of plant fibers and castor oil resin, analyzing the viability of their use as construction material. For the research, orthogonal fabrics made with waste plant fibers supplied by a company… More >

  • Open Access

    ARTICLE

    Paraelectric Doping Simultaneously Improves the Field Frequency Adaptability and Dielectric Properties of Ferroelectric Materials: A Phase-Field Study

    Zhi Wang1, Jinming Cao1, Zhonglei Liu1, Yuhong Zhao1,2,3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 213-228, 2024, DOI:10.32604/cmc.2024.055169 - 15 October 2024

    Abstract Recent years, the polarization response of ferroelectrics has been entirely studied. However, it is found that the polarization may disappear gradually with the continually applied of electric field. In this paper, taking K0.48Na0.52NbO3(KNN) as an example, it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods. The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency, the maximum polarization disappeared at high frequencies, and the hysteresis loop became elliptical. In More >

  • Open Access

    PROCEEDINGS

    Dynamic Crack Propagation of Ceramic Materials under High Temperature Thermal Shock

    Biao Xia1,2, Changxing Zhang2,3,*, Zhanli Liu2, Xue Feng2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012764

    Abstract Ceramics has become one of the most promising candidate materials in the aerospace field due to its advantages of high melting point, corrosion resistance, wear resistance, and high-temperature stability [1,2]. However, the inherent brittleness of ceramics makes it prone to thermal shock failure under high-temperature extreme environments, which can lead to sudden catastrophic accidents in the structure [3-6]. This paper takes the high-temperature resistant ceramic materials in the aerospace industry as the research object. And the dynamic crack propagation mechanism is analyzed. Through the computational method based on the extended finite element method (XFEM), the… More >

  • Open Access

    PROCEEDINGS

    Emergent Behaviors in Ferroelectric Materials Due to Phase Coexistence

    Xiaoyan Lu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012507

    Abstract Ferroelectric materials usually experience various phase under external temperature, electric and stress fields. Unique properties such as piezoelectricity, dielectricity, polarization reversal, and phase transitions are widely used in various electronic devices. Particularly, the phase and domain structures, ferroelastic switching behaviors often play a crucial role in determining their dielectric and piezoelectric properties. Here, we report some abnormal behaviors in ferroelectric thin films and single crystals, from which, we build the Landau theoretical model for relaxor ferroelectric single crystals. Using this model, we studied the phase coexistence and the corresponding physical properties. Using the results, we More >

  • Open Access

    PROCEEDINGS

    On Broadband Continuum Modeling of Lattice Metamaterials

    Jinxing Liu1,*, Binying Wang1, Changqing Peng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011544

    Abstract Unlike classical condensed matters with the characteristic microstructural size far smaller than the undergoing wavelength, lattice metamaterials call for a kind of subwavelength continuum modeling, which should be able to provide successful predictions throughout the first Brillouin zone. We classify lattices into two groups. The first category stands for the mass-spring systems composed of dump masses and massless springs, for which three attempts have been made: the strain gradient continuum based on wavelength-dependent Taylor’s expansion [1, 2], Pade approximation [3] and Symbiotic Optimal Search (SOS) [4], respectively. The results of these newly developed models agree… More >

Displaying 1-10 on page 1 of 501. Per Page