Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning

    Xingzi Yang1, Wei Gao2, Xiaodu Wang1, Xiaowei Zeng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1299-1313, 2024, DOI:10.32604/cmes.2024.049371 - 20 May 2024

    Abstract The bioinspired nacre or bone structure represents a remarkable example of tough, strong, lightweight, and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials. The bioinspired structure consists of hard grains and soft material interfaces. While the material interface has a very low volume percentage, its property has the ability to determine the bulk material response. Machine learning technology nowadays is widely used in material science. A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite. This model More >

  • Open Access

    ARTICLE

    Numerical Simulation of Detonation and Multi-Material Interface Tracking

    Cheng Wang1, Jianguo Ning1, Tianbao Ma1

    CMC-Computers, Materials & Continua, Vol.22, No.1, pp. 73-96, 2011, DOI:10.3970/cmc.2011.022.073

    Abstract In this paper, we report high resolution simulations using a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method to examine the features of the detonation for gas and condensed explosives. A two-stage chemical reaction model and an ignition and growth model are employed to describe the chemical reaction process for gas and condensed explosives. Based on the Steger-Warming vector flux splitting method, a splitting method is employed when the vector flux does not satisfy the homogeneity property for simulating detonation wave propagation for condensed explosives. The sensibility of flame More >

  • Open Access

    ARTICLE

    A Discontinuous Galerkin Meshfree Modeling of Material Interface

    Dongdong Wang1,2, Yue Sun2, Ling Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.45, No.1, pp. 57-82, 2009, DOI:10.3970/cmes.2009.045.057

    Abstract A discontinuous Galerkin meshfree formulation is proposed to solve the potential and elasticity problems of composite material where the material interface has to be appropriately modeled. In the present approach the problem domain is partitioned into patches or sub-domains and each patch holds the same material properties. The discretized meshfree particles within a patch are classified as one particle group. Various patches occupied by different particle groups are then linked using the discontinuous Galerkin formulation where an averaged interface flux or traction is constructed based on the fluxes or tractions computed from the adjacent patches. More >

  • Open Access

    ARTICLE

    Analysis of Structure with Material Interface by Meshfree Method

    S. Masuda1, H. Noguchi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.3, pp. 131-144, 2006, DOI:10.3970/cmes.2006.011.131

    Abstract This paper presents a novel and accurate technique for modeling discontinuous derivatives in meshfree methods, which will be used in the analysis of structures with material interfaces. The novelty lies in the formulation of the Moving Least Squares Approximation (MLSA) scheme where an introduced discontinuous derivative basis function replaces the conventional linear basis function. Furthermore, it is easy to implement this novelty into existing meshfree methods, such as the Element Free Galerkin (EFG) method, which are based on the MLSA scheme. The successful analyses of one and two-dimensional structures with material interfaces demonstrate the potential More >

Displaying 1-10 on page 1 of 4. Per Page