Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (84)
  • Open Access

    ARTICLE

    Applying the Shearlet-Based Complexity Measure for Analyzing Mass Transfer in Continuous-Flow Microchannels

    Elena Mosheva1,*, Ivan Krasnyakov2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1743-1758, 2024, DOI:10.32604/fdmp.2024.049146

    Abstract Continuous-flow microchannels are widely employed for synthesizing various materials, including nanoparticles, polymers, and metal-organic frameworks (MOFs), to name a few. Microsystem technology allows precise control over reaction parameters, resulting in purer, more uniform, and structurally stable products due to more effective mass transfer manipulation. However, continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows. On the one hand, convection can accelerate reactions by intensifying mass transfer. On the other hand, it may lead to non-uniformity in the final product or defects, especially in MOF microcrystal synthesis. The ability… More > Graphic Abstract

    Applying the Shearlet-Based Complexity Measure for Analyzing Mass Transfer in Continuous-Flow Microchannels

  • Open Access

    ARTICLE

    Optimal Design of Drying Process of the Potatoes with Multi-Agent Reinforced Deep Learning

    Mohammad Yaghoub Abdollahzadeh Jamalabadi*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 511-536, 2024, DOI:10.32604/fhmt.2024.051004

    Abstract Heat and mass transport through evaporation or drying processes occur in many applications such as food processing, pharmaceutical products, solar-driven vapor generation, textile design, and electronic cigarettes. In this paper, the transport of water from a fresh potato considered as a wet porous media with laminar convective dry air fluid flow governed by Darcy’s law in two-dimensional is highlighted. Governing equations of mass conservation, momentum conservation, multiphase fluid flow in porous media, heat transfer, and transport of participating fluids and gases through evaporation from liquid to gaseous phase are solved simultaneously. In this model, the… More >

  • Open Access

    ARTICLE

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al2O3-Eg and TiO2-Eg Fluids on a Stretched Surface

    K. Jyothi1, Abhishek Dasore2,3,*, R. Ganapati4, Sk. Mohammad Shareef5, Ali J. Chamkha6, V. Raghavendra Prasad7

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 79-105, 2024, DOI:10.32604/fhmt.2024.046891

    Abstract In the current research, a thorough examination unfolds concerning the attributes of magnetohydrodynamic (MHD) boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al2O3-Eg and TiO2-Eg compositions. Such nanoliquids are subjected to an extending surface. Consideration is duly given to slip boundary conditions, as well as the effects stemming from variable viscosity and variable thermal conductivity. The analytical approach applied involves the application of suitable similarity transformations. These conversions serve to transform the initial set of complex nonlinear partial differential equations into a more manageable assembly of ordinary differential equations. Through the utilization… More > Graphic Abstract

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al<sub>2</sub>O<sub>3</sub>-Eg and TiO<sub>2</sub>-Eg Fluids on a Stretched Surface

  • Open Access

    PROCEEDINGS

    Key Transport Mechanisms in Supercritical CO2 Based Pilot Micromodels Subjected to Bottom Heat and Mass Diffusion

    Karim Ragui1, Mengshuai Chen1,2, Lin Chen1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010378

    Abstract The ambiguous dynamics associated with heat and mass transfer of invading carbon dioxide in sub-critical and supercritical states, as well as the response of pore-scale resident fluids, play a key role in understanding CO2 capture and storage (CCUS) and the corresponding phase equilibrium mechanisms. To this end, this paper reveals the transport mechanisms of invading supercritical carbon dioxide (sCO2) in polluted micromodels using a variant of Lattice-Boltzmann Color Fluid model and descriptive experimental data. The breakthrough time is evaluated by characterizing the displacement velocity, the capillary to pressuredifference ratio, and the transient heat and mass diffusion More >

  • Open Access

    ARTICLE

    Numerical Comparison of Stagnation Point Casson Fluid Stream over Flat and Cylindrical Surfaces with Joule Heating and Chemical Reaction Impacts

    Shaik Jaffrullah1, Sridhar Wuriti1,*, Raghavendra Ganesh Ganugapati2, Srinivasa Rao Talagadadevi1

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 407-426, 2023, DOI:10.32604/fhmt.2023.043305

    Abstract In this particular study, we have considered the flow of Casson fluid over inclined flat and cylindrical surfaces, and have conducted a numerical analysis taking into account various physical factors such as mixed convection, stagnation point flow, MHD, thermal radiation, viscous dissipation, heat generation, Joule heating effect, variable thermal conductivity and chemical reaction. Flow over flat plate phenomena is observed aerospace industry, and airflow over solar panels, etc. Cylindrical surfaces are commonly used in several applications interacting with fluids, such as bridges, cables, and buildings, so the study of fluid flow over cylindrical surfaces is… More >

  • Open Access

    ARTICLE

    Computational Analysis of Heat and Mass Transfer in Magnetized Darcy-Forchheimer Hybrid Nanofluid Flow with Porous Medium and Slip Effects

    Nosheen Fatima1, Nabeela Kousar1, Khalil Ur Rehman2,3,*, Wasfi Shatanawi2,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2311-2330, 2023, DOI:10.32604/cmes.2023.026994

    Abstract A computational analysis of magnetized hybrid Darcy-Forchheimer nanofluid flow across a flat surface is presented in this work. For the study of heat and mass transfer aspects viscous dissipation, activation energy, Joule heating, thermal radiation, and heat generation effects are considered. The suspension of nanoparticles singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are created by hybrid nanofluids. However, single-walled carbon nanotubes (SWCNTs) produce nanofluids, with water acting as conventional fluid, respectively. Nonlinear partial differential equations (PDEs) that describe the ultimate flow are converted to nonlinear ordinary differential equations (ODEs) using appropriate similarity transformation.… More >

  • Open Access

    REVIEW

    A Comprehensive Review of the Influence of Heat Exchange Tubes on Hydrodynamic, Heat, and Mass Transfer in Bubble and Slurry Bubble Columns

    Dalia S. Makki1, Hasan Sh. Majdi2, Amer A. Abdulrahman1, Abbas J. Sultan1,3,*, Zahraa W. Hasan1, Laith S. Sabri1,3, Bashar J. Kadhim1, Muthanna H. Al-Dahhan3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2613-2637, 2023, DOI:10.32604/fdmp.2023.028081

    Abstract Bubble and slurry bubble column reactors (BCRs/SBCRs) are used for various chemical, biochemical, and petrochemical applications. They have several operational and maintenance advantages, including excellent heat and mass transfer rates, simplicity, and low operating and maintenance cost. Typically, a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products. Since most applications involve complicated gas-liquid, gas-liquid-solid, and exothermic processes, the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance. In this review, past and very recent experimental and numerical investigations on More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER IN DRYING OF CARROT BY RADIO FREQUENCY ASSISTED HEAT PUMP DRYING

    Le Anh Duca , Pham Van Kienb,*, Nguyen Thanh Tanb, Doan Thanh Sonb, Nhanh Van Nguyenc, Ngoc Xuan Nguyend

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-6, 2023, DOI:10.5098/hmt.20.25

    Abstract This study focused on the heat and mass transfer in radio (RF) assisted heat pump (HP) drying of carrots. The experimental drying of carrot by RF assisted HP drying method was conducted to evaluate the effect of RF power on drying efficiency including drying rate and heating rate. The input drying parameters were drying air temperature of 45oC, drying air velocity of 2.5 m/s and RF power of 0, 0.5 and 1.5 kW, in which, RF power of 0 was corresponding to HP drying method. The experimental drying results showed that in RF assisted HP… More >

  • Open Access

    ARTICLE

    Theory and Semi-Analytical Study of Micropolar Fluid Dynamics through a Porous Channel

    Aziz Khan1, Sana Ullah2, Kamal Shah1,3, Manar A. Alqudah4, Thabet Abdeljawad1,5,*, Fazal Ghani2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1473-1486, 2023, DOI:10.32604/cmes.2022.023019

    Abstract In this work, We are looking at the characteristics of micropolar flow in a porous channel that’s being driven by suction or injection. The working of the fluid is described in the flow model. We can reduce the governing nonlinear partial differential equations (PDEs) to a model of coupled systems of nonlinear ordinary differential equations using similarity variables (ODEs). In order to obtain the results of a coupled system of nonlinear ODEs, we discuss a method which is known as the differential transform method (DTM). The concern transform is an excellent mathematical tool to obtain More > Graphic Abstract

    Theory and Semi-Analytical Study of Micropolar Fluid Dynamics through a Porous Channel

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER OF HUMID-AIR INSIDE AN OPEN CAVITY: PARAMETRIC STUDY

    Tounsi Chatia,* , Kouider Rahmanib, Toufik Tayeb Naasc, Abdelkader Rouibahb

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-11, 2022, DOI:10.5098/hmt.18.19

    Abstract Numerical results of turbulent natural convection and mass transfer in an open enclosure for different aspect ratios (AR = 0.5, 1, and 2) with a humidair are carried out. Mass fraction and local Nusselt number were proposed to investigate the heat and mass transfer. A heat flux boundary conditions were subjected to the lateral walls and the bottom one make as an adiabatic wall, while the top area was proposed as a free surface. Effect of Rayleigh numbers (106More >

Displaying 1-10 on page 1 of 84. Per Page