Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Impact of Magnetic Field on a Peristaltic Flow with Heat Transfer of a Fractional Maxwell Fluid in a Tube

    Hanan S. Gafel*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 6141-6153, 2022, DOI:10.32604/cmc.2022.017378 - 21 April 2022

    Abstract Magnetic field and the fractional Maxwell fluids’ impacts on peristaltic flows within a circular cylinder tube with heat transfer was evaluated while assuming that they are preset with a low-Reynolds number and a long wavelength. Utilizing, the fractional calculus method, the problem was solved analytically. It was deduced for temperature, axial velocity, tangential stress, and heat transfer coefficient. Many emerging parameters and their effects on the aspects of the flow were illustrated, and the outcomes were expressed via graphs. A special focus was dedicated to some criteria, such as the wave amplitude's effect, Hartman and More >

  • Open Access

    ARTICLE

    EFFECT OF THE VARIABILITY OF HEAT AND MASS TRANSFER COEFFICIENTS ON 3D UNSATURATED POROUS MEDIUM DRYING

    Nidhal Ben Khedhera,b,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-7, 2018, DOI:10.5098/hmt.10.28

    Abstract A Three-dimensional unstructured control volume finite method is developed to simulate unsteady coupled heat and mass transfer phenomena that arise during convective drying of unsaturated porous media. In order to simulate 3D geometries, as application here the drying of clay brick portion, we developed a Fortran code based on 3D unstructured meshes generated by the free mesh generator Gmsh. Several simulation results are presented and depict the effect of the variability of heat and mass transfer coefficients. These simulations prove that only three-dimensional model is able to capture the effect of variability of heat and More >

Displaying 1-10 on page 1 of 2. Per Page