Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    AquaTree: Deep Reinforcement Learning-Driven Monte Carlo Tree Search for Underwater Image Enhancement

    Chao Li1,3,#, Jianing Wang1,3,#, Caichang Ding2,*, Zhiwei Ye1,3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071242 - 12 January 2026

    Abstract Underwater images frequently suffer from chromatic distortion, blurred details, and low contrast, posing significant challenges for enhancement. This paper introduces AquaTree, a novel underwater image enhancement (UIE) method that reformulates the task as a Markov Decision Process (MDP) through the integration of Monte Carlo Tree Search (MCTS) and deep reinforcement learning (DRL). The framework employs an action space of 25 enhancement operators, strategically grouped for basic attribute adjustment, color component balance, correction, and deblurring. Exploration within MCTS is guided by a dual-branch convolutional network, enabling intelligent sequential operator selection. Our core contributions include: (1) a More >

  • Open Access

    ARTICLE

    Intelligent Scheduling of Virtual Power Plants Based on Deep Reinforcement Learning

    Shaowei He, Wenchao Cui*, Gang Li, Hairun Xu, Xiang Chen, Yu Tai

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 861-886, 2025, DOI:10.32604/cmc.2025.063979 - 09 June 2025

    Abstract The Virtual Power Plant (VPP), as an innovative power management architecture, achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources. However, due to significant differences in operational costs and flexibility of various types of generation resources, as well as the volatility and uncertainty of renewable energy sources (such as wind and solar power) and the complex variability of load demand, the scheduling optimization of virtual power plants has become a critical issue that needs to be addressed. To solve this, this paper proposes an intelligent scheduling method for virtual power… More >

  • Open Access

    ARTICLE

    Service Function Chain Deployment Algorithm Based on Multi-Agent Deep Reinforcement Learning

    Wanwei Huang1,*, Qiancheng Zhang1, Tao Liu2, Yaoli Xu1, Dalei Zhang3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4875-4893, 2024, DOI:10.32604/cmc.2024.055622 - 12 September 2024

    Abstract Aiming at the rapid growth of network services, which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain (SFC) under 5G networks, this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment (MADDPG-SD). Initially, an optimization model is devised to enhance the request acceptance rate, minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case. Subsequently, we model the dynamic problem as a Markov decision process (MDP), facilitating adaptation to the… More >

  • Open Access

    ARTICLE

    Distributed Resource Allocation in Dispersed Computing Environment Based on UAV Track Inspection in Urban Rail Transit

    Tong Gan1, Shuo Dong1, Shiyou Wang1, Jiaxin Li2,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 643-660, 2024, DOI:10.32604/cmc.2024.051408 - 18 July 2024

    Abstract With the rapid development of urban rail transit, the existing track detection has some problems such as low efficiency and insufficient detection coverage, so an intelligent and automatic track detection method based on UAV is urgently needed to avoid major safety accidents. At the same time, the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices. As a result, the Dispersed Computing (DCOMP) architecture enables collaborative computing between devices in the Internet of Everything (IoE), promotes low-latency and efficient cross-wide applications, and… More >

  • Open Access

    ARTICLE

    Wireless Sensor Networks Routing Attacks Prevention with Blockchain and Deep Neural Network

    Mohamed Ali1, Ibrahim A. Abd El-Moghith2, Mohamed N. El-Derini3, Saad M. Darwish2,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6127-6140, 2022, DOI:10.32604/cmc.2022.021305 - 11 October 2021

    Abstract Routing is a key function in Wireless Sensor Networks (WSNs) since it facilitates data transfer to base stations. Routing attacks have the potential to destroy and degrade the functionality of WSNs. A trustworthy routing system is essential for routing security and WSN efficiency. Numerous methods have been implemented to build trust between routing nodes, including the use of cryptographic methods and centralized routing. Nonetheless, the majority of routing techniques are unworkable in reality due to the difficulty of properly identifying untrusted routing node activities. At the moment, there is no effective way to avoid malicious… More >

Displaying 1-10 on page 1 of 5. Per Page