Amal Al-Rasheed1, Jaber S. Alzahrani2, Majdy M. Eltahir3, Abdullah Mohamed4, Anwer Mustafa Hilal5,*, Abdelwahed Motwakel5, Abu Sarwar Zamani5, Mohamed I. Eldesouki6
CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3275-3290, 2022, DOI:10.32604/cmc.2022.029823
- 16 June 2022
Abstract The biomedical data classification process has received significant attention in recent times due to a massive increase in the generation of healthcare data from various sources. The developments of artificial intelligence (AI) and machine learning (ML) models assist in the effectual design of medical data classification models. Therefore, this article concentrates on the development of optimal Stacked Long Short Term Memory Sequence-to-Sequence Autoencoder (OSAE-LSTM) model for biomedical data classification. The presented OSAE-LSTM model intends to classify the biomedical data for the existence of diseases. Primarily, the OSAE-LSTM model involves min-max normalization based pre-processing to scale More >