Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Manta Ray Foraging Optimization with Machine Learning Based Biomedical Data Classification

    Amal Al-Rasheed1, Jaber S. Alzahrani2, Majdy M. Eltahir3, Abdullah Mohamed4, Anwer Mustafa Hilal5,*, Abdelwahed Motwakel5, Abu Sarwar Zamani5, Mohamed I. Eldesouki6

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3275-3290, 2022, DOI:10.32604/cmc.2022.029823 - 16 June 2022

    Abstract The biomedical data classification process has received significant attention in recent times due to a massive increase in the generation of healthcare data from various sources. The developments of artificial intelligence (AI) and machine learning (ML) models assist in the effectual design of medical data classification models. Therefore, this article concentrates on the development of optimal Stacked Long Short Term Memory Sequence-to-Sequence Autoencoder (OSAE-LSTM) model for biomedical data classification. The presented OSAE-LSTM model intends to classify the biomedical data for the existence of diseases. Primarily, the OSAE-LSTM model involves min-max normalization based pre-processing to scale More >

  • Open Access

    ARTICLE

    Robust Node Localization with Intrusion Detection for Wireless Sensor Networks

    R. Punithavathi1, R. Thanga Selvi2, R. Latha3, G. Kadiravan4,*, V. Srikanth5, Neeraj Kumar Shukla6

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 143-156, 2022, DOI:10.32604/iasc.2022.023344 - 05 January 2022

    Abstract Wireless sensor networks comprise a set of autonomous sensor nodes, commonly used for data gathering and tracking applications. Node localization and intrusion detection are considered as the major design issue in WSN. Therefore, this paper presents a new multi-objective manta ray foraging optimization (MRFO) based node localization with intrusion detection (MOMRFO-NLID) technique for WSN. The goal of the MOMRFO-NLID technique is to optimally localize the unknown nodes and determine the existence of intrusions in the network. The MOMRFO-NLID technique encompasses two major stages namely MRFO based localization of nodes and optimal Siamese Neural Network (OSNN) More >

  • Open Access

    ARTICLE

    Fractional-Order Control of a Wind Turbine Using Manta Ray Foraging Optimization

    Hegazy Rezk1,2,*, Mohammed Mazen Alhato3, Mohemmed Alhaider1, Soufiene Bouallègue3,4

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 185-199, 2021, DOI:10.32604/cmc.2021.016175 - 22 March 2021

    Abstract In this research paper, an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator (DFIG) based wind energy system has been proposed. The proposed strategy used the robust Fractional-Order (FO) Proportional-Integral (PI) control technique. The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits. It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness. The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization (MRFO) More >

Displaying 1-10 on page 1 of 3. Per Page