Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    An AI/ML Framework-Driven Approach for Malicious Traffic Detection in Open RAN

    Suhyeon Lee1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2657-2682, 2025, DOI:10.32604/cmes.2025.070627 - 26 November 2025

    Abstract The open nature and heterogeneous architecture of Open Radio Access Network (Open RAN) undermine the consistency of security policies and broaden the attack surface, thereby increasing the risk of security vulnerabilities. The dynamic nature of network performance and traffic patterns in Open RAN necessitates advanced detection models that can overcome the constraints of traditional techniques and adapt to evolving behaviors. This study presents a methodology for effectively detecting malicious traffic in Open RAN by utilizing an Artificial-Intelligence/Machine-Learning (AI/ML) Framework. A hybrid Transformer–Convolutional-Neural-Network (Transformer-CNN) ensemble model is employed for anomaly detection. The proposed model generates final More >

  • Open Access

    ARTICLE

    FSMMTD: A Feature Subset-Based Malicious Traffic Detection Method

    Xuan Wu1, Yafei Song1, Xiaodan Wang1,*, Peng Wang1, Qian Xiang2

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1279-1305, 2025, DOI:10.32604/cmc.2025.064471 - 09 June 2025

    Abstract With the growth of the Internet of Things (IoT) comes a flood of malicious traffic in the IoT, intensifying the challenges of network security. Traditional models operate with independent layers, limiting their effectiveness in addressing these challenges. To address this issue, we propose a cross-layer cooperative Feature Subset-Based Malicious Traffic Detection (FSMMTD) model for detecting malicious traffic. Our approach begins by applying an enhanced random forest method to adaptively filter and retain highly discriminative first-layer features. These processed features are then input into an improved state-space model that integrates the strengths of recurrent neural networks… More >

  • Open Access

    ARTICLE

    ONTDAS: An Optimized Noise-Based Traffic Data Augmentation System for Generalizability Improvement of Traffic Classifiers

    Rongwei Yu1, Jie Yin1,*, Jingyi Xiang1, Qiyun Shao2, Lina Wang1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 365-391, 2025, DOI:10.32604/cmc.2025.064438 - 09 June 2025

    Abstract With the emergence of new attack techniques, traffic classifiers usually fail to maintain the expected performance in real-world network environments. In order to have sufficient generalizability to deal with unknown malicious samples, they require a large number of new samples for retraining. Considering the cost of data collection and labeling, data augmentation is an ideal solution. We propose an optimized noise-based traffic data augmentation system, ONTDAS. The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise. The noise is injected into the original samples for data augmentation. Then, an More >

  • Open Access

    ARTICLE

    TB-Graph: Enhancing Encrypted Malicious Traffic Classification through Relational Graph Attention Networks

    Ming Liu, Qichao Yang, Wenqing Wang, Shengli Liu*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2985-3004, 2025, DOI:10.32604/cmc.2024.059417 - 17 February 2025

    Abstract The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable challenge to cybersecurity. Traditional machine learning and deep learning techniques often fall short in identifying encrypted malicious traffic due to their inability to fully extract and utilize the implicit relational and positional information embedded within data packets. This limitation has led to an unresolved challenge in the cybersecurity community: how to effectively extract valuable insights from the complex patterns of traffic packet transmission. Consequently, this paper introduces the… More >

  • Open Access

    ARTICLE

    Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices

    So-Eun Jeon1, Ye-Sol Oh1, Yeon-Ji Lee1, Il-Gu Lee1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1669-1687, 2024, DOI:10.32604/cmes.2024.047239 - 20 May 2024

    Abstract With the advancement of wireless network technology, vast amounts of traffic have been generated, and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated. While signature-based detection methods, static analysis, and dynamic analysis techniques have been previously explored for malicious traffic detection, they have limitations in identifying diversified malware traffic patterns. Recent research has been focused on the application of machine learning to detect these patterns. However, applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process. In… More >

  • Open Access

    ARTICLE

    BSTFNet: An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features

    Hong Huang1, Xingxing Zhang1,*, Ye Lu1, Ze Li1, Shaohua Zhou2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3929-3951, 2024, DOI:10.32604/cmc.2024.047918 - 26 March 2024

    Abstract While encryption technology safeguards the security of network communications, malicious traffic also uses encryption protocols to obscure its malicious behavior. To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic, we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features, called BERT-based Spatio-Temporal Features Network (BSTFNet). At the packet-level granularity, the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers (BERT)… More >

  • Open Access

    ARTICLE

    Malicious Traffic Compression and Classification Technique for Secure Internet of Things

    Yu-Rim Lee1, Na-Eun Park1, Seo-Yi Kim2, Il-Gu Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3465-3482, 2023, DOI:10.32604/cmc.2023.041196 - 08 October 2023

    Abstract With the introduction of 5G technology, the application of Internet of Things (IoT) devices is expanding to various industrial fields. However, introducing a robust, lightweight, low-cost, and low-power security solution to the IoT environment is challenging. Therefore, this study proposes two methods using a data compression technique to detect malicious traffic efficiently and accurately for a secure IoT environment. The first method, compressed sensing and learning (CSL), compresses an event log in a bitmap format to quickly detect attacks. Then, the attack log is detected using a machine-learning classification model. The second method, precise re-learning… More >

  • Open Access

    ARTICLE

    Malicious Traffic Detection in IoT and Local Networks Using Stacked Ensemble Classifier

    R. D. Pubudu L. Indrasiri1, Ernesto Lee2, Vaibhav Rupapara3, Furqan Rustam4, Imran Ashraf5,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 489-515, 2022, DOI:10.32604/cmc.2022.019636 - 03 November 2021

    Abstract Malicious traffic detection over the internet is one of the challenging areas for researchers to protect network infrastructures from any malicious activity. Several shortcomings of a network system can be leveraged by an attacker to get unauthorized access through malicious traffic. Safeguard from such attacks requires an efficient automatic system that can detect malicious traffic timely and avoid system damage. Currently, many automated systems can detect malicious activity, however, the efficacy and accuracy need further improvement to detect malicious traffic from multi-domain systems. The present study focuses on the detection of malicious traffic with high… More >

Displaying 1-10 on page 1 of 8. Per Page