Jianbo Xu, Wenxi Chen*
CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1807-1819, 2022, DOI:10.32604/cmc.2022.021154
- 03 November 2021
Abstract This study proposes a convolutional neural network (CNN)-based identity recognition scheme using electrocardiogram (ECG) at different water temperatures (WTs) during bathing, aiming to explore the impact of ECG length on the recognition rate. ECG data was collected using non-contact electrodes at five different WTs during bathing. Ten young student subjects (seven men and three women) participated in data collection. Three ECG recordings were collected at each preset bathtub WT for each subject. Each recording is 18 min long, with a sampling rate of 200 Hz. In total, 150 ECG recordings and 150 WT recordings were… More >