Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Unsteady Flow of Hybrid Nanofluid with Magnetohydrodynamics- Radiation-Natural Convection Effects in a U-Shaped Wavy Porous Cavity

    Taher Armaghani1, Lioua Kolsi2, Najiyah Safwa Khashi’ie3,*, Ahmed Muhammed Rashad4, Muhammed Ahmed Mansour5, Taha Salah6, Aboulbaba Eladeb7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2225-2251, 2024, DOI:10.32604/cmes.2024.056676 - 31 October 2024

    Abstract In this paper, the unsteady magnetohydrodynamic (MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated. This problem has relevant applications in optimizing thermal management systems in electronic devices, solar energy collectors, and other industrial applications where efficient heat transfer is very important. The study is based on the application of a numerical approach using the Finite Difference Method (FDM) for the resolution of the governing equations, which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media. It was found that the increase of Hartmann number… More >

  • Open Access

    ARTICLE

    Nanofluid Heat Transfer in Irregular 3D Surfaces under Magnetohydrodynamics and Multi-Slip Effects

    Mumtaz Khan1,*, Muhammad Shoaib Anwar2, Mudassar Imran3, Amer Rasheed4

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1399-1419, 2024, DOI:10.32604/fhmt.2024.056597 - 30 October 2024

    Abstract This study employs the Buongiorno model to explore nanoparticle migration in a mixed convection second-grade fluid over a slendering (variable thickness) stretching sheet. The convective boundary conditions are applied to the surface. In addition, the analysis has been carried out in the presence of Joule heating, slips effects, thermal radiation, heat generation and magnetohydrodynamic. This study aimed to understand the complex dynamics of these nanofluids under various external influences. The governing model has been developed using the flow assumptions such as boundary layer approximations in terms of partial differential equations. Governing partial differential equations are… More >

  • Open Access

    ARTICLE

    Artificial Intelligence-Driven FVM-ANN Model for Entropy Analysis of MHD Natural Bioconvection in Nanofluid-Filled Porous Cavities

    Noura Alsedais1, Mohamed Ahmed Mansour2, Abdelraheem M. Aly3, Sara I. Abdelsalam4,5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1277-1307, 2024, DOI:10.32604/fhmt.2024.056087 - 30 October 2024

    Abstract The research examines fluid behavior in a porous box-shaped enclosure. The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle. Natural circulation driven by biological factors is investigated. The analysis combines a traditional numerical approach with machine learning techniques. Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods. The artificial neural network (ANN) model, trained with the Levenberg-Marquardt method, accurately predicts values, showing high correlation (R = 1), low mean squared error (MSE), and minimal error clustering. Parametric analysis reveals significant… More >

  • Open Access

    ARTICLE

    Numerical Study of Temperature-Dependent Viscosity and Thermal Conductivity of Micropolar Ag–MgO Hybrid Nanofluid over a Rotating Vertical Cone

    Mekonnen S. Ayano1,*, Thokozani N. Khumalo1, Stephen T. Sikwila2, Stanford Shateyi3

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1153-1169, 2024, DOI:10.32604/fhmt.2024.048474 - 30 August 2024

    Abstract The present paper examines the temperature-dependent viscosity and thermal conductivity of a micropolar silver ()−Magnesium oxide () hybrid nanofluid made of silver and magnesium oxide over a rotating vertical cone, with the influence of transverse magnetic field and thermal radiation. The physical flow problem has been modeled with coupled partial differential equations. We apply similarity transformations to the non-dimensionalized equations, and the resulting nonlinear differential equations are solved using overlapping grid multidomain spectral quasilinearization method. The flow behavior for the fluid is scrutinized under the impact of diverse physical constraints, which are illustrated graphically. The More >

  • Open Access

    ARTICLE

    Experimental Study of Liquid Metal Flow for the Development of a Contact-Less Control Technique

    Aleksandr Poluyanov*, Ilya Kolesnichenko

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1553-1563, 2024, DOI:10.32604/fdmp.2024.050165 - 23 July 2024

    Abstract The article presents an experimental study on the flow of an eutectic gallium alloy in a cylindrical cell, which is placed in an alternating magnetic field. The magnetic field is generated by a coil connected to an alternating current source. The coil is located at a fixed height in such a way that its plane is perpendicular to the gravity vector, which in turn is parallel to the axis of the cylinder. The position of the cylinder can vary in height with respect to the coil. The forced flow of the considered electrically conductive liquid… More > Graphic Abstract

    Experimental Study of Liquid Metal Flow for the Development of a Contact-Less Control Technique

  • Open Access

    ARTICLE

    Finite Difference Approach on Magnetohydrodynamic Stratified Fluid Flow Past Vertically Accelerated Plate in Porous Media with Viscous Dissipation

    M. Sridevi1, B. Shankar Goud2, Ali Hassan3,4,*, D. Mahendar5

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 939-953, 2024, DOI:10.32604/fhmt.2024.050929 - 11 July 2024

    Abstract This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation. It is assumed that the medium under study is a grey, non-scattered fluid that both fascinates and transmits radiation. The leading equations are discretized using the finite difference method (FDM). Using MATLAB software, the impacts of flow factors on flow fields are revealed with particular examples in graphs and a table. In this regard, FDM results show that the velocity and temperature gradients increase with an increase of Eckert More >

  • Open Access

    ARTICLE

    Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump

    He Wang1,*, Ying He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 889-899, 2024, DOI:10.32604/fdmp.2023.042728 - 28 March 2024

    Abstract Magnetohydrodynamic (MHD) induction pumps are contactless pumps able to withstand harsh environments. The rate of fluid flow through the pump directly affects the efficiency and stability of the device. To explore the influence of induction pump settings on the related delivery speed, in this study, a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump. The effects of current intensity, frequency, coil turns and coil winding size on the velocity of the working fluid are analyzed. It is shown that the More >

  • Open Access

    ARTICLE

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

    R. Madan Kumar1, R. Srinivasa Raju2, F. Mebarek-Oudina3,*, M. Anil Kumar4, V. K. Narla2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 15-34, 2024, DOI:10.32604/fhmt.2024.048045 - 21 March 2024

    Abstract The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamic Williamson nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium. In the current analysis, the impacts of Soret and Dufour (cross-diffusion effects) have been attentively taken into consideration. Using appropriate similarity variable transformations, the governing nonlinear partial differential equations were altered into nonlinear ordinary differential equations and then solved numerically using the Runge Kutta Fehlberg-45 method along with the shooting technique. Numerical simulations were then perceived to show the consequence of various physical parameters on the… More > Graphic Abstract

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

  • Open Access

    ARTICLE

    Effects of Viscous Dissipation and Periodic Heat Flux on MHD Free Convection Channel Flow with Heat Generation

    Mustafa Abdullah*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 141-156, 2024, DOI:10.32604/fhmt.2024.046788 - 21 March 2024

    Abstract This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic (MHD) flow through a vertical channel with heat generation. A theoretical approach is employed. The channel is exposed to a perpendicular magnetic field, while one side experiences a periodic heat flow, and the other side undergoes a periodic temperature variation. Numerical solutions for the governing partial differential equations are obtained using a finite difference approach, complemented by an eigenfunction expansion method for analytical solutions. Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields. This offers comprehensive More >

  • Open Access

    ARTICLE

    Natural Convection and Irreversibility of Nanofluid Due to Inclined Magnetohydrodynamics (MHD) Filled in a Cavity with Y-Shape Heated Fin: FEM Computational Configuration

    Afraz Hussain Majeed1, Rashid Mahmood2, Sayed M. Eldin3, Imran Saddique4,5,*, S. Saleem6, Muhammad Jawad7

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1505-1519, 2024, DOI:10.32604/cmes.2023.030255 - 29 January 2024

    Abstract This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin and magnetic field. The temperature is constant on the Y-shaped fin, insulating the top wall while the remaining walls remain cold. All walls are subject to impermeability and non-slip conditions. The mathematical modeling of the problem is demonstrated by the continuity, momentum, and energy equations incorporating the inclined magnetic field. For elucidating the flow characteristics Finite Element Method (FEM) is implemented using stable FE pair. A hybrid fine mesh is used for discretizing the domain. Velocity and More >

Displaying 1-10 on page 1 of 40. Per Page