Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Low-Complexity Hardware Architecture for Batch Normalization of CNN Training Accelerator

    Go-Eun Woo, Sang-Bo Park, Gi-Tae Park, Muhammad Junaid, Hyung-Won Kim*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3241-3257, 2025, DOI:10.32604/cmc.2025.063723 - 03 July 2025

    Abstract On-device Artificial Intelligence (AI) accelerators capable of not only inference but also training neural network models are in increasing demand in the industrial AI field, where frequent retraining is crucial due to frequent production changes. Batch normalization (BN) is fundamental to training convolutional neural networks (CNNs), but its implementation in compact accelerator chips remains challenging due to computational complexity, particularly in calculating statistical parameters and gradients across mini-batches. Existing accelerator architectures either compromise the training accuracy of CNNs through approximations or require substantial computational resources, limiting their practical deployment. We present a hardware-optimized BN accelerator… More >

  • Open Access

    ARTICLE

    TP-MobNet: A Two-pass Mobile Network for Low-complexity Classification of Acoustic Scene

    Soonshin Seo1, Junseok Oh2, Eunsoo Cho2, Hosung Park2, Gyujin Kim2, Ji-Hwan Kim2,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3291-3303, 2022, DOI:10.32604/cmc.2022.026259 - 16 June 2022

    Abstract Acoustic scene classification (ASC) is a method of recognizing and classifying environments that employ acoustic signals. Various ASC approaches based on deep learning have been developed, with convolutional neural networks (CNNs) proving to be the most reliable and commonly utilized in ASC systems due to their suitability for constructing lightweight models. When using ASC systems in the real world, model complexity and device robustness are essential considerations. In this paper, we propose a two-pass mobile network for low-complexity classification of the acoustic scene, named TP-MobNet. With inverse residuals and linear bottlenecks, TP-MobNet is based on… More >

  • Open Access

    ARTICLE

    Energy-Efficient Low-Complexity Algorithm in 5G Massive MIMO Systems

    Adeeb Salh1, Lukman Audah1,*, Qazwan Abdullah1, Nor Shahida M. Shah2, Shipun A. Hamzah1, Shahilah Nordin3, Nabil Farah2

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3189-3214, 2021, DOI:10.32604/cmc.2021.014746 - 01 March 2021

    Abstract Energy efficiency (EE) is a critical design when taking into account circuit power consumption (CPC) in fifth-generation cellular networks. These problems arise because of the increasing number of antennas in massive multiple-input multiple-output (MIMO) systems, attributable to inter-cell interference for channel state information. Apart from that, a higher number of radio frequency (RF) chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers. Therefore, antenna selection, user selection, optimal transmission power, and pilot reuse power are important aspects in improving energy efficiency in… More >

Displaying 1-10 on page 1 of 3. Per Page