Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (78)
  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    Optimizing Bearing Fault Detection: CNN-LSTM with Attentive TabNet for Electric Motor Systems

    Alaa U. Khawaja1, Ahmad Shaf2,*, Faisal Al Thobiani3, Tariq Ali4, Muhammad Irfan5, Aqib Rehman Pirzada2, Unza Shahkeel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2399-2420, 2024, DOI:10.32604/cmes.2024.054257 - 31 October 2024

    Abstract Electric motor-driven systems are core components across industries, yet they’re susceptible to bearing faults. Manual fault diagnosis poses safety risks and economic instability, necessitating an automated approach. This study proposes FTCNNLSTM (Fine-Tuned TabNet Convolutional Neural Network Long Short-Term Memory), an algorithm combining Convolutional Neural Networks, Long Short-Term Memory Networks, and Attentive Interpretable Tabular Learning. The model preprocesses the CWRU (Case Western Reserve University) bearing dataset using segmentation, normalization, feature scaling, and label encoding. Its architecture comprises multiple 1D Convolutional layers, batch normalization, max-pooling, and LSTM blocks with dropout, followed by batch normalization, dense layers, and More >

  • Open Access

    ARTICLE

    Seasonal Short-Term Load Forecasting for Power Systems Based on Modal Decomposition and Feature-Fusion Multi-Algorithm Hybrid Neural Network Model

    Jiachang Liu1,*, Zhengwei Huang2, Junfeng Xiang1, Lu Liu1, Manlin Hu1

    Energy Engineering, Vol.121, No.11, pp. 3461-3486, 2024, DOI:10.32604/ee.2024.054514 - 21 October 2024

    Abstract To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance, this paper proposes a seasonal short-term load combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model. Specifically, the characteristics of load components are analyzed for different seasons, and the corresponding models are established. First, the improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) method is employed to decompose the system load for all four seasons, and the new sequence is obtained through reconstruction based on the… More >

  • Open Access

    ARTICLE

    An Efficient Long Short-Term Memory and Gated Recurrent Unit Based Smart Vessel Trajectory Prediction Using Automatic Identification System Data

    Umar Zaman1, Junaid Khan2, Eunkyu Lee1,3, Sajjad Hussain4, Awatef Salim Balobaid5, Rua Yahya Aburasain5, Kyungsup Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1789-1808, 2024, DOI:10.32604/cmc.2024.056222 - 15 October 2024

    Abstract Maritime transportation, a cornerstone of global trade, faces increasing safety challenges due to growing sea traffic volumes. This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System (AIS) data and advanced deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (DBLSTM), Simple Recurrent Neural Network (SimpleRNN), and Kalman Filtering. The research implemented rigorous AIS data preprocessing, encompassing record deduplication, noise elimination, stationary simplification, and removal of insignificant trajectories. Models were trained using key navigational parameters: latitude, longitude, speed, and heading. Spatiotemporal aware processing through trajectory segmentation… More >

  • Open Access

    ARTICLE

    An Aerial Target Recognition Algorithm Based on Self-Attention and LSTM

    Futai Liang1,2, Xin Chen1,*, Song He1, Zihao Song1, Hao Lu3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1101-1121, 2024, DOI:10.32604/cmc.2024.055326 - 15 October 2024

    Abstract In the application of aerial target recognition, on the one hand, the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise. On the other hand, it is difficult to apply machine learning methods to improve the intelligence and recognition effect due to few or no actual measurement samples. Aiming at these problems, an aerial target recognition algorithm based on self-attention and Long Short-Term Memory Network (LSTM) is proposed. LSTM can effectively extract temporal dependencies. The attention mechanism calculates the weight of each input element and… More >

  • Open Access

    ARTICLE

    DeepBio: A Deep CNN and Bi-LSTM Learning for Person Identification Using Ear Biometrics

    Anshul Mahajan*, Sunil K. Singla

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1623-1649, 2024, DOI:10.32604/cmes.2024.054468 - 27 September 2024

    Abstract The identification of individuals through ear images is a prominent area of study in the biometric sector. Facial recognition systems have faced challenges during the COVID-19 pandemic due to mask-wearing, prompting the exploration of supplementary biometric measures such as ear biometrics. The research proposes a Deep Learning (DL) framework, termed DeepBio, using ear biometrics for human identification. It employs two DL models and five datasets, including IIT Delhi (IITD-I and IITD-II), annotated web images (AWI), mathematical analysis of images (AMI), and EARVN1. Data augmentation techniques such as flipping, translation, and Gaussian noise are applied to More >

  • Open Access

    ARTICLE

    A Lightweight Intrusion Detection System Using Convolutional Neural Network and Long Short-Term Memory in Fog Computing

    Hawazen Alzahrani1, Tarek Sheltami1, Abdulaziz Barnawi2, Muhammad Imam2,*, Ansar Yaser3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4703-4728, 2024, DOI:10.32604/cmc.2024.054203 - 12 September 2024

    Abstract The Internet of Things (IoT) links various devices to digital services and significantly improves the quality of our lives. However, as IoT connectivity is growing rapidly, so do the risks of network vulnerabilities and threats. Many interesting Intrusion Detection Systems (IDSs) are presented based on machine learning (ML) techniques to overcome this problem. Given the resource limitations of fog computing environments, a lightweight IDS is essential. This paper introduces a hybrid deep learning (DL) method that combines convolutional neural networks (CNN) and long short-term memory (LSTM) to build an energy-aware, anomaly-based IDS. We test this… More >

  • Open Access

    ARTICLE

    A Complex Fuzzy LSTM Network for Temporal-Related Forecasting Problems

    Nguyen Tho Thong1, Nguyen Van Quyet1,2, Cu Nguyen Giap3,*, Nguyen Long Giang1, Luong Thi Hong Lan4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4173-4196, 2024, DOI:10.32604/cmc.2024.054031 - 12 September 2024

    Abstract Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development of management platforms and systems based on the Internet and cutting-edge information communication technologies. Mining the time series data including time series prediction has many practical applications. Many new techniques were developed for use with various types of time series data in the prediction problem. Among those, this work suggests a unique strategy to enhance predicting quality on time-series datasets that the time-cycle matters by fusing deep learning methods with fuzzy theory. In order to increase forecasting accuracy… More >

  • Open Access

    ARTICLE

    Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images

    Prasanalakshmi Balaji1,*, Omar Alqahtani1, Sangita Babu2, Mousmi Ajay Chaurasia3, Shanmugapriya Prakasam4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 443-458, 2024, DOI:10.32604/cmes.2024.053158 - 20 August 2024

    Abstract Breast cancer is a significant threat to the global population, affecting not only women but also a threat to the entire population. With recent advancements in digital pathology, Eosin and hematoxylin images provide enhanced clarity in examining microscopic features of breast tissues based on their staining properties. Early cancer detection facilitates the quickening of the therapeutic process, thereby increasing survival rates. The analysis made by medical professionals, especially pathologists, is time-consuming and challenging, and there arises a need for automated breast cancer detection systems. The upcoming artificial intelligence platforms, especially deep learning models, play an More >

  • Open Access

    ARTICLE

    DPAL-BERT: A Faster and Lighter Question Answering Model

    Lirong Yin1, Lei Wang1, Zhuohang Cai2, Siyu Lu2,*, Ruiyang Wang2, Ahmed AlSanad3, Salman A. AlQahtani3, Xiaobing Chen4, Zhengtong Yin5, Xiaolu Li6, Wenfeng Zheng2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 771-786, 2024, DOI:10.32604/cmes.2024.052622 - 20 August 2024

    Abstract Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems. However, with the constant evolution of algorithms, data, and computing power, the increasing size and complexity of these models have led to increased training costs and reduced efficiency. This study aims to minimize the inference time of such models while maintaining computational performance. It also proposes a novel Distillation model for PAL-BERT (DPAL-BERT), specifically, employs knowledge distillation, using the PAL-BERT model as the teacher model to train two student models: DPAL-BERT-Bi and DPAL-BERT-C. This research enhances the dataset More >

Displaying 1-10 on page 1 of 78. Per Page