Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Enhancing PDF Malware Detection through Logistic Model Trees

    Muhammad Binsawad*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3645-3663, 2024, DOI:10.32604/cmc.2024.048183 - 26 March 2024

    Abstract Malware is an ever-present and dynamic threat to networks and computer systems in cybersecurity, and because of its complexity and evasiveness, it is challenging to identify using traditional signature-based detection approaches. The study article discusses the growing danger to cybersecurity that malware hidden in PDF files poses, highlighting the shortcomings of conventional detection techniques and the difficulties presented by adversarial methodologies. The article presents a new method that improves PDF virus detection by using document analysis and a Logistic Model Tree. Using a dataset from the Canadian Institute for Cybersecurity, a comparative analysis is carried… More >

  • Open Access

    ARTICLE

    Classifying Machine Learning Features Extracted from Vibration Signal with Logistic Model Tree to Monitor Automobile Tyre Pressure

    P. S. Anoop1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 191-208, 2017, DOI:10.3970/sdhm.2017.011.191

    Abstract Tyre pressure monitoring system (TPMS) is compulsory in most countries like the United States and European Union. The existing systems depend on pressure sensors strapped on the tyre or on wheel speed sensor data. A difference in wheel speed would trigger an alarm based on the algorithm implemented. In this paper, machine learning approach is proposed as a new method to monitor tyre pressure by extracting the vertical vibrations from a wheel hub of a moving vehicle using an accelerometer. The obtained signals will be used to compute through statistical features and histogram features for More >

  • Open Access

    ARTICLE

    Fault Diagnosis of Helical Gear Box using Variational Mode Decomposition and Random Forest Algorithm

    Akhil Muralidharan1,2, V. Sugumaran1, K.P Soman3, M. Amarnath4

    Structural Durability & Health Monitoring, Vol.10, No.1, pp. 55-80, 2014, DOI:10.3970/sdhm.2014.010.055

    Abstract Gears are machine elements that transmit motion by means of successively engaging teeth. In purely scientific terms, gears are used to transmit motion. A faulty gear is a matter of serious concern as it affects the functionality of a machine to a great extent. Thus it is essential to diagnose the faults at an initial stage so as to reduce the losses that might be incurred. This necessitates the need for continuous monitoring of the gears. The vibrations produced by gears from good and simulated faulty conditions can be effectively used to detect the faults… More >

Displaying 1-10 on page 1 of 3. Per Page