Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    Far-Field Underwater Explosion Shock Wave Propagation Simulation Using the Three Dimensional Discontinuous Galerkin Method

    Zhaoxu Lian1,Wenbin Wu2,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011054

    Abstract The underwater explosion (UNDEX) could cause the fatal damage of naval ships and submarines in the naval battle, and seriously threaten their combat capability [1]. The UNDEX process is very complicated, including the propagation and reflection of the shock wave, formation and collapse of cavitation zone, trainset dynamic structural response and so on [2]. In this paper, we develop the three-dimensional Discontinuous Galerkin method (DGM) model for simulating the propagation of incident shock loading in fluid domain. The pressure cutoff model is employed to deal with the cavitation effect due to the reflection of the More >

  • Open Access

    ARTICLE

    On Caputo-Type Cable Equation: Analysis and Computation

    Zhen Wang1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 353-376, 2020, DOI:10.32604/cmes.2020.08776 - 01 April 2020

    Abstract In this paper, a special case of nonlinear time fractional cable equation is studied. For the equation defined on a bounded domain, the existence, uniqueness, and regularity of the solution are firstly studied. Furthermore, it is numerically studied via the weighted and shifted Grünwald difference (WSGD) methods/the local discontinuous Galerkin (LDG) finite element methods. The derived numerical scheme has been proved to be stable and convergent with order O(∆t2 + hk+1), where ∆t, h, k are the time stepsize, the spatial stepsize, and the degree of piecewise polynomials, respectively. Finally, a numerical experiment is presented to verify the More >

Displaying 1-10 on page 1 of 2. Per Page