Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Influence of the Loading Protocol and Loading Rate on the Characteristics of Timber Nail Joints

    Shervin Shameli Derakhshan1, Lina Zhou1,*, Chun Ni2

    Journal of Renewable Materials, Vol.10, No.10, pp. 2655-2667, 2022, DOI:10.32604/jrm.2022.020671 - 08 June 2022

    Abstract Nail joints are one of the key components that control the lateral performance of light wood frame shear walls. In previous experimental studies, researchers have used different loading rates, which failed specimens from less than a minute to more than an hour, to study the characteristics of nail joints. Moreover, there have been different loading protocols used for testing of timber nail joints or shear walls. Although some efforts have been made to address this subject, it is still unclear how the loading protocol and loading rate may influence the performance of nail joints. In More >

  • Open Access

    ABSTRACT

    Contour-Based Data Analysis: Loading Rate Dependence in Dynamic Catch of Integrin-Ligand Bonds

    Xueyi Yang1, Yue Xu1, Chun Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 101-101, 2019, DOI:10.32604/mcb.2019.07117

    Abstract Cell-matrix interactions guide various cell behaviors, including proliferation, differentiation, migration, etc. Integrins, as a known transmembrane mechanosensor, undergo conformational changes in response to mechanical stimuli, and manipulate cell-matrix chemical-mechanical coupled signaling transduction [1]. The integrin-ligand bond kinetics has gain increasing attention among researchers. Independent studies showed that the integrin-ligand bond has been reported to be reinforced by the applied force f, while the loading rate df/dt had little effect on the bond lifetime [2].
    We previously observed a dramatic increase in bond lifetime beyond a loading rate threshold for the integrin α2β1-DGEA bond, by introducing… More >

  • Open Access

    ARTICLE

    Characterization of Loading Rate Effects on the Interactions between Crack Growth and Inclusions in Cementitious Material

    Shuai Zhou3,4, Xiaoying Zhuang1,2,*

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 417-446, 2018, DOI:10.32604/cmc.2018.01742

    Abstract The microcapsule-enabled cementitious material is an appealing building material and it has been attracting increasing research interest. By considering microcapsules as dissimilar inclusions in the material, this paper employs the discrete element method (DEM) to study the effects of loading rates on the fracturing behavior of cementitious specimens containing the inclusion and the crack. The numerical model was first developed and validated based on experimental results. It is then used to systematically study the initiation, the propagation and the coalescence of cracks in inclusion-enabled cementitious materials. The study reveals that the crack propagation speed, the More >

  • Open Access

    ABSTRACT

    Material characterization and modeling of head for dynamic simulations

    L. Zhang1, T. Boulet1, J. Hein1, M. Arnoult1, M. Negahban1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.2, pp. 37-46, 2010, DOI:10.3970/icces.2010.015.037

    Abstract The modeling of the response of the human head to blast like loading is of importance for many applications including the study of traumatic brain injury resulting from improvised explosive devices. One key issue in simulating the response of the head is to have models that are characteristic of the response of the head and its components under these conditions. We review different characterization efforts for evaluating the response of the skin, skull, and brain within this window of response and use these results to develop models appropriate for the characterization of each component. We More >

Displaying 1-10 on page 1 of 4. Per Page