Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    Explore Wetting Dynamics at Micro and Nano Scales: Applications and Progress of Long-Needle Atomic Force Microscope

    Dongshi Guan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011291

    Abstract Contact line pinning and the corresponding contact angle hysteresis (CAH) are important interfacial phenomena that occur in nature and play a significant role in many industrial processes, such as surface coating, ink-jet printing, and immersion lithography. Traditional optical methods face limitations due to the optical diffraction limit, making it difficult to directly measure flow and interface phenomena at the micro- or nanoscale. However, atomic force microscopy (AFM) offers a solution by enabling precise manipulation and force measurements at micro and nano scales. The AFM-based microrheometer, which is assembled with a long-needle probe, can be used More >

  • Open Access

    PROCEEDINGS

    Probing Electrified Ionic Liquid-Solid Interface Using Long-Needle AFM

    Pengcheng Nie1,2, Xikai Jiang1, Xu Zheng1, Dongshi Guan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09838

    Abstract “How can we measure interface phenomena on the microscopic level” is a fundamental question that has been with us for many years and is also listed in recent Science 125 question. It is even harder to explore the electrified interface. In this work, we report atomic-force-microscope measurements of interfacial dynamics of an electrified room-temperature ionic liquid (RTIL)-solid interface. RTILs are intriguing fluids that have drawn much attention in applications ranging from tribology and catalysis to energy storage. With strong electrostatic interaction between ions, their interfacial behaviors can be modulated by controlling energetics of the electrified… More >

  • Open Access

    ARTICLE

    Nanobubbles at Water-Solid Interfaces: Calculation of the Contact Angle Based on a Simple Model

    H. Elnaiem1, D. Casimir1, P. Misra1, S.M. Gatica1,2

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 23-34, 2009, DOI:10.3970/cmc.2009.014.023

    Abstract Nanobubbles have been found to form at the interface of water and solid surfaces. We examine the conditions for such bubbles to form and estimate the pressure inside the bubble based on thermodynamic considerations. Using a simple model we calculate the contact angle for a wide range of temperatures and hypothetical substrates possessing a continuous range of strengths. We show that as the temperature increases the shape of a bubble changes continuously from a spherical cap with low curvature to a complete sphere. An equivalent effect results from either increasing the strength of the solid More >

Displaying 1-10 on page 1 of 3. Per Page