Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    An Automatic Threshold Selection Using ALO for Healthcare Duplicate Record Detection with Reciprocal Neuro-Fuzzy Inference System

    Ala Saleh Alluhaidan1,*, Pushparaj2, Anitha Subbappa3, Ved Prakash Mishra4, P. V. Chandrika5, Anurika Vaish6, Sarthak Sengupta6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5821-5836, 2023, DOI:10.32604/cmc.2023.033995 - 28 December 2022

    Abstract ESystems based on EHRs (Electronic health records) have been in use for many years and their amplified realizations have been felt recently. They still have been pioneering collections of massive volumes of health data. Duplicate detections involve discovering records referring to the same practical components, indicating tasks, which are generally dependent on several input parameters that experts yield. Record linkage specifies the issue of finding identical records across various data sources. The similarity existing between two records is characterized based on domain-based similarity functions over different features. De-duplication of one dataset or the linkage of… More >

  • Open Access

    ARTICLE

    Optimal Deep Belief Network Based Lung Cancer Detection and Survival Rate Prediction

    Sindhuja Manickavasagam1,*, Poonkuzhali Sugumaran2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 939-953, 2023, DOI:10.32604/csse.2023.030491 - 16 August 2022

    Abstract The combination of machine learning (ML) approaches in healthcare is a massive advantage designed at curing illness of millions of persons. Several efforts are used by researchers for detecting and providing primary phase insights as to cancer analysis. Lung cancer remained the essential source of disease connected mortality for both men as well as women and their frequency was increasing around the world. Lung disease is the unrestrained progress of irregular cells which begin off in one or both Lungs. The previous detection of cancer is not simpler procedure however if it can be detected,… More >

  • Open Access

    ARTICLE

    Modeling and Control of Parallel Hybrid Electric Vehicle Using Sea-Lion Optimization

    J. Leon Bosco Raj1,*, M. Marsaline Beno2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1441-1454, 2023, DOI:10.32604/iasc.2023.026211 - 19 July 2022

    Abstract This paper develops a parallel hybrid electric vehicle (PHEV) proportional integral controller with driving cycle. To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles (HEVs) combine an electric motor (EM), a battery and an internal combustion engine (ICE). The electric motor assists the engine when accelerating, driving longer highways or climbing hills. This enables the use of a smaller, more efficient engine. It also makes use of the concept of regenerative braking to maximize energy efficiency. In a Hybrid Electric Vehicle (HEV), energy dissipated while braking is utilized to charge the battery. More >

  • Open Access

    ARTICLE

    Moving Multi-Object Detection and Tracking Using MRNN and PS-KM Models

    V. Premanand*, Dhananjay Kumar

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1807-1821, 2023, DOI:10.32604/csse.2023.026742 - 15 June 2022

    Abstract On grounds of the advent of real-time applications, like autonomous driving, visual surveillance, and sports analysis, there is an augmenting focus of attention towards Multiple-Object Tracking (MOT). The tracking-by-detection paradigm, a commonly utilized approach, connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the similarities of the appearance or the motion between them. For an efficient detection and tracking of the numerous objects in a complex environment, a Pearson Similarity-centred Kuhn-Munkres (PS-KM) algorithm was proposed in the present study. In this light, the input videos were, initially, gathered from the MOT… More >

  • Open Access

    ARTICLE

    Swarm Optimization and Machine Learning for Android Malware Detection

    K. Santosh Jhansi1,2,*, P. Ravi Kiran Varma2, Sujata Chakravarty3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6327-6345, 2022, DOI:10.32604/cmc.2022.030878 - 28 July 2022

    Abstract Malware Security Intelligence constitutes the analysis of applications and their associated metadata for possible security threats. Application Programming Interfaces (API) calls contain valuable information that can help with malware identification. The malware analysis with reduced feature space helps for the efficient identification of malware. The goal of this research is to find the most informative features of API calls to improve the android malware detection accuracy. Three swarm optimization methods, viz., Ant Lion Optimization (ALO), Cuckoo Search Optimization (CSO), and Firefly Optimization (FO) are applied to API calls using auto-encoders for identification of most influential More >

  • Open Access

    ARTICLE

    Hybrid Optimized Learning for Lung Cancer Classification

    R. Vidhya1,*, T. T. Mirnalinee2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 911-925, 2022, DOI:10.32604/iasc.2022.025060 - 03 May 2022

    Abstract Computer tomography (CT) scan images can provide more helpful diagnosis information regarding the lung cancers. Many machine learning and deep learning algorithms are formulated using CT input scan images for the improvisation in diagnosis and treatment process. But, designing an accurate and intelligent system still remains in darker side of the research side. This paper proposes the novel classification model which works on the principle of fused features and optimized learning network. The proposed framework incorporates the principle of saliency maps as a first tier segmentation, which is then fused with deep convolutional neural networks… More >

  • Open Access

    ARTICLE

    Incremental Learning Framework for Mining Big Data Stream

    Alaa Eisa1, Nora EL-Rashidy2, Mohammad Dahman Alshehri3,*, Hazem M. El-bakry1, Samir Abdelrazek1

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2901-2921, 2022, DOI:10.32604/cmc.2022.021342 - 07 December 2021

    Abstract At this current time, data stream classification plays a key role in big data analytics due to its enormous growth. Most of the existing classification methods used ensemble learning, which is trustworthy but these methods are not effective to face the issues of learning from imbalanced big data, it also supposes that all data are pre-classified. Another weakness of current methods is that it takes a long evaluation time when the target data stream contains a high number of features. The main objective of this research is to develop a new method for incremental learning More >

  • Open Access

    ARTICLE

    Packet Optimization of Software Defined Network Using Lion Optimization

    Jagmeet Kaur1, Shakeel Ahmed2, Yogesh Kumar3, A. Alaboudi4, N. Z. Jhanjhi5, Muhammad Fazal Ijaz6,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2617-2633, 2021, DOI:10.32604/cmc.2021.017470 - 21 July 2021

    Abstract There has been an explosion of cloud services as organizations take advantage of their continuity, predictability, as well as quality of service and it raises the concern about latency, energy-efficiency, and security. This increase in demand requires new configurations of networks, products, and service operators. For this purpose, the software-defined network is an efficient technology that enables to support the future network functions along with the intelligent applications and packet optimization. This work analyzes the offline cloud scenario in which machines are efficiently deployed and scheduled for user processing requests. Performance is evaluated in terms More >

  • Open Access

    ARTICLE

    LOA-RPL: Novel Energy-Efficient Routing Protocol for the Internet of Things Using Lion Optimization Algorithm to Maximize Network Lifetime

    Sankar Sennan1, Somula Ramasubbareddy2, Anand Nayyar3,4, Yunyoung Nam5,*, Mohamed Abouhawwash6,7

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 351-371, 2021, DOI:10.32604/cmc.2021.017360 - 04 June 2021

    Abstract Energy conservation is a significant task in the Internet of Things (IoT) because IoT involves highly resource-constrained devices. Clustering is an effective technique for saving energy by reducing duplicate data. In a clustering protocol, the selection of a cluster head (CH) plays a key role in prolonging the lifetime of a network. However, most cluster-based protocols, including routing protocols for low-power and lossy networks (RPLs), have used fuzzy logic and probabilistic approaches to select the CH node. Consequently, early battery depletion is produced near the sink. To overcome this issue, a lion optimization algorithm (LOA)… More >

  • Open Access

    ARTICLE

    Hybridization of Fuzzy and Hard Semi-Supervised Clustering Algorithms Tuned with Ant Lion Optimizer Applied to Higgs Boson Search

    Soukaina Mjahed1,*, Khadija Bouzaachane1, Ahmad Taher Azar2,3, Salah El Hadaj1, Said Raghay1

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 459-494, 2020, DOI:10.32604/cmes.2020.010791 - 12 October 2020

    Abstract This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the “Higgs machine learning challenge 2014” data set. This unsupervised detection goes in this paper analysis through 4 steps: (1) selection of the most informative features from the considered data; (2) definition of the number of clusters based on the elbow criterion. The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters; (3) proposition of a new approach for hybridization of… More >

Displaying 1-10 on page 1 of 10. Per Page