Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    Multiscale Optimization of Non-Linear Structures

    Ryan Murphy1,*, Dilaksan Thillaithevan1, Matthew Santer1, Rob Hewson1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011402

    Abstract In this work we describe the multiscale optimization of non-linear structures. This work moves beyond classical multiscale optimization for linear problems to account for large deformations occurring across the scales of the problem. A multiscale approach is adopted based on the homogenization theory which is used to characterize a parameterized representative volume element (RVE). This RVE characterization is undertaken for both changes in the geometry and the strain applied to the RVE. This latter is a key difference between multiscale approaches for non-linear problems and those for linear problems. This is because the characteristics of… More >

  • Open Access

    ARTICLE

    Research on Image Quality Enhancement Algorithm Using Hessian Matrix

    Xi Chen1, Yanpeng Wu2,*, Chenxue Zhu2, Hongjun Liu3

    Journal of New Media, Vol.4, No.3, pp. 117-123, 2022, DOI:10.32604/jnm.2022.027060 - 13 June 2022

    Abstract The Hessian matrix has a wide range of applications in image processing, such as edge detection, feature point detection, etc. This paper proposes an image enhancement algorithm based on the Hessian matrix. First, the Hessian matrix is obtained by convolving the derivative of the Gaussian function. Then use the Hessian matrix to enhance the linear structure in the image. Experimental results show that the method proposed in this paper has strong robustness and accuracy. More >

  • Open Access

    ABSTRACT

    Shape optimization of nonlinear structure using adjoint variable approach and gradient-based Kriging method

    Zhenhan Yao, Yintao Wei

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.2, pp. 51-52, 2011, DOI:10.3970/icces.2011.016.051

    Abstract Shape optimization is very important in many engineering fields. As conventional engineering design, the shape optimization is generally based on the finite element analysis. Because many engineering strutures are related to different nonlinear problems in their working state, the analysis for each design sample is quite time consuming. For example for the shape optimization of automotive tires, it is related to the geometrical, material nonlinearity, and boundary nonlinearity caused by the contact problem. Therefore, the finite element analysis combined with sensitivity analysis to get more information for each design sample is a strategy usually adopted.… More >

Displaying 1-10 on page 1 of 3. Per Page