Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    RLAT: Lightweight Transformer for High-Resolution Range Profile Sequence Recognition

    Xiaodan Wang*, Peng Wang, Yafei Song, Qian Xiang, Jingtai Li

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 217-246, 2024, DOI:10.32604/csse.2023.039846 - 26 January 2024

    Abstract High-resolution range profile (HRRP) automatic recognition has been widely applied to military and civilian domains. Present HRRP recognition methods have difficulty extracting deep and global information about the HRRP sequence, which performs poorly in real scenes due to the ambient noise, variant targets, and limited data. Moreover, most existing methods improve the recognition performance by stacking a large number of modules, but ignore the lightweight of methods, resulting in over-parameterization and complex computational effort, which will be challenging to meet the deployment and application on edge devices. To tackle the above problems, this paper proposes… More >

  • Open Access

    ARTICLE

    Deep Feature Bayesian Classifier for SAR Target Recognition with Small Training Set

    Liguo Zhang1,2, Zilin Tian1, Yan Zhang3,*, Tong Shuai4, Shuo Liang4, Zhuofei Wu5

    Journal of New Media, Vol.4, No.2, pp. 59-71, 2022, DOI:10.32604/jnm.2022.029360 - 13 June 2022

    Abstract In recent years, deep learning algorithms have been popular in recognizing targets in synthetic aperture radar (SAR) images. However, due to the problem of overfitting, the performance of these models tends to worsen when just a small number of training data are available. In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition, in this paper, we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model (RBnet) for SAR image target… More >

  • Open Access

    ARTICLE

    Efficient Data Augmentation Techniques for Improved Classification in Limited Data Set of Oral Squamous Cell Carcinoma

    Wael Alosaimi1,*, M. Irfan Uddin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1387-1401, 2022, DOI:10.32604/cmes.2022.018433 - 19 April 2022

    Abstract Deep Learning (DL) techniques as a subfield of data science are getting overwhelming attention mainly because of their ability to understand the underlying pattern of data in making classifications. These techniques require a considerable amount of data to efficiently train the DL models. Generally, when the data size is larger, the DL models perform better. However, it is not possible to have a considerable amount of data in different domains such as healthcare. In healthcare, it is impossible to have a substantial amount of data to solve medical problems using Artificial Intelligence, mainly due to… More >

  • Open Access

    ARTICLE

    Lung Nodule Detection Based on YOLOv3 Deep Learning with Limited Datasets

    Zhaohui Bu1, Xuejun Zhang2,3,*, Jianxiang Lu4, Huan Lao5, Chan Liang2, Xianfu Xu2, Yini Wei2, Hongjie Zeng2

    Molecular & Cellular Biomechanics, Vol.19, No.1, pp. 17-28, 2022, DOI:10.32604/mcb.2022.018318 - 12 January 2022

    Abstract The early symptom of lung tumor is always appeared as nodule on CT scans, among which 30% to 40% are malignant according to statistics studies. Therefore, early detection and classification of lung nodules are crucial to the treatment of lung cancer. With the increasing prevalence of lung cancer, large amount of CT images waiting for diagnosis are huge burdens to doctors who may missed or false detect abnormalities due to fatigue. Methods: In this study, we propose a novel lung nodule detection method based on YOLOv3 deep learning algorithm with only one preprocessing step is… More >

Displaying 1-10 on page 1 of 4. Per Page