Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    A Novel YOLOv5s-Based Lightweight Model for Detecting Fish’s Unhealthy States in Aquaculture

    Bing Shi1,*, Jianhua Zhao1, Bin Ma1, Juan Huan2, Yueping Sun3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2437-2456, 2024, DOI:10.32604/cmc.2024.056377 - 18 November 2024

    Abstract Real-time detection of unhealthy fish remains a significant challenge in intensive recirculating aquaculture. Early recognition of unhealthy fish and the implementation of appropriate treatment measures are crucial for preventing the spread of diseases and minimizing economic losses. To address this issue, an improved algorithm based on the You Only Look Once v5s (YOLOv5s) lightweight model has been proposed. This enhanced model incorporates a faster lightweight structure and a new Convolutional Block Attention Module (CBAM) to achieve high recognition accuracy. Furthermore, the model introduces the α-SIoU loss function, which combines the α-Intersection over Union (α-IoU) and… More >

  • Open Access

    ARTICLE

    Development of a Lightweight Model for Handwritten Dataset Recognition: Bangladeshi City Names in Bangla Script

    Md. Mahbubur Rahman Tusher1, Fahmid Al Farid2,*, Md. Al-Hasan1, Abu Saleh Musa Miah1, Susmita Roy Rinky1, Mehedi Hasan Jim1, Sarina Mansor2, Md. Abdur Rahim3, Hezerul Abdul Karim2,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2633-2656, 2024, DOI:10.32604/cmc.2024.049296 - 15 August 2024

    Abstract The context of recognizing handwritten city names, this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script. In today’s technology-driven era, where precise tools for reading handwritten text are essential, this study focuses on leveraging deep learning to understand the intricacies of Bangla handwriting. The existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems, particularly in critical areas such as postal automation and document processing. Notably, no prior research has specifically targeted the unique needs of Bangla handwritten city name… More >

  • Open Access

    ARTICLE

    MG-YOLOv5s: A Faster and Stronger Helmet Detection Algorithm

    Zerui Xiao, Wei Liu, Zhiwei Ye*, Jiatang Yuan, Shishi Liu

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1009-1029, 2024, DOI:10.32604/csse.2023.040475 - 17 July 2024

    Abstract Nowadays, construction site safety accidents are frequent, and wearing safety helmets is essential to prevent head injuries caused by object collisions and falls. However, existing helmet detection algorithms have several drawbacks, including a complex structure with many parameters, high calculation volume, and poor detection of small helmets, making deployment on embedded or mobile devices difficult. To address these challenges, this paper proposes a YOLOv5-based multi-head detection safety helmet detection algorithm that is faster and more robust for detecting helmets on construction sites. By replacing the traditional DarkNet backbone network of YOLOv5s with a new backbone… More >

  • Open Access

    ARTICLE

    YOLO-CRD: A Lightweight Model for the Detection of Rice Diseases in Natural Environments

    Rui Zhang1,2, Tonghai Liu1,2,*, Wenzheng Liu1,2, Chaungchuang Yuan1,2, Xiaoyue Seng1,2, Tiantian Guo1,2, Xue Wang1,2

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1275-1296, 2024, DOI:10.32604/phyton.2024.052397 - 27 June 2024

    Abstract Rice diseases can adversely affect both the yield and quality of rice crops, leading to the increased use of pesticides and environmental pollution. Accurate detection of rice diseases in natural environments is crucial for both operational efficiency and quality assurance. Deep learning-based disease identification technologies have shown promise in automatically discerning disease types. However, effectively extracting early disease features in natural environments remains a challenging problem. To address this issue, this study proposes the YOLO-CRD method. This research selected images of common rice diseases, primarily bakanae disease, bacterial brown spot, leaf rice fever, and dry… More >

  • Open Access

    ARTICLE

    RLAT: Lightweight Transformer for High-Resolution Range Profile Sequence Recognition

    Xiaodan Wang*, Peng Wang, Yafei Song, Qian Xiang, Jingtai Li

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 217-246, 2024, DOI:10.32604/csse.2023.039846 - 26 January 2024

    Abstract High-resolution range profile (HRRP) automatic recognition has been widely applied to military and civilian domains. Present HRRP recognition methods have difficulty extracting deep and global information about the HRRP sequence, which performs poorly in real scenes due to the ambient noise, variant targets, and limited data. Moreover, most existing methods improve the recognition performance by stacking a large number of modules, but ignore the lightweight of methods, resulting in over-parameterization and complex computational effort, which will be challenging to meet the deployment and application on edge devices. To tackle the above problems, this paper proposes… More >

  • Open Access

    ARTICLE

    Two-Stage Edge-Side Fault Diagnosis Method Based on Double Knowledge Distillation

    Yang Yang1, Yuhan Long1, Yijing Lin2, Zhipeng Gao1, Lanlan Rui1, Peng Yu1,3,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3623-3651, 2023, DOI:10.32604/cmc.2023.040250 - 08 October 2023

    Abstract With the rapid development of the Internet of Things (IoT), the automation of edge-side equipment has emerged as a significant trend. The existing fault diagnosis methods have the characteristics of heavy computing and storage load, and most of them have computational redundancy, which is not suitable for deployment on edge devices with limited resources and capabilities. This paper proposes a novel two-stage edge-side fault diagnosis method based on double knowledge distillation. First, we offer a clustering-based self-knowledge distillation approach (Cluster KD), which takes the mean value of the sample diagnosis results, clusters them, and takes… More >

  • Open Access

    ARTICLE

    A Deep Learning-Based Crowd Counting Method and System Implementation on Neural Processing Unit Platform

    Yuxuan Gu, Meng Wu*, Qian Wang, Siguang Chen, Lijun Yang

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 493-512, 2023, DOI:10.32604/cmc.2023.035974 - 06 February 2023

    Abstract In this paper, a deep learning-based method is proposed for crowd-counting problems. Specifically, by utilizing the convolution kernel density map, the ground truth is generated dynamically to enhance the feature-extracting ability of the generator model. Meanwhile, the “cross stage partial” module is integrated into congested scene recognition network (CSRNet) to obtain a lightweight network model. In addition, to compensate for the accuracy drop owing to the lightweight model, we take advantage of “structured knowledge transfer” to train the model in an end-to-end manner. It aims to accelerate the fitting speed and enhance the learning ability… More >

  • Open Access

    ARTICLE

    Cephalopods Classification Using Fine Tuned Lightweight Transfer Learning Models

    P. Anantha Prabha1,*, G. Suchitra2, R. Saravanan3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3065-3079, 2023, DOI:10.32604/iasc.2023.030017 - 17 August 2022

    Abstract Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist. Manual observation and identification take time and are always contingent on the involvement of experts. A system is proposed to alleviate this challenge that uses transfer learning techniques to classify the cephalopods automatically. In the proposed method, only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition. First, the efficiency of the chosen models is determined by evaluating their performance and comparing the findings. Second, the models are fine-tuned by adding dense layers… More >

  • Open Access

    ARTICLE

    A Lightweight Model of VGG-U-Net for Remote Sensing Image Classification

    Mu Ye1,2,3,4, Li Ji1, Luo Tianye1, Li Sihan5, Zhang Tong1, Feng Ruilong1, Hu Tianli1,2,3,4, Gong He1,2,3,4, Guo Ying1,2,3,4, Sun Yu1,2,3,4, Thobela Louis Tyasi6, Li Shijun7,8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6195-6205, 2022, DOI:10.32604/cmc.2022.026880 - 28 July 2022

    Abstract Remote sensing image analysis is a basic and practical research hotspot in remote sensing science. Remote sensing images contain abundant ground object information and it can be used in urban planning, agricultural monitoring, ecological services, geological exploration and other aspects. In this paper, we propose a lightweight model combining vgg-16 and u-net network. By combining two convolutional neural networks, we classify scenes of remote sensing images. While ensuring the accuracy of the model, try to reduce the memory of the model. According to the experimental results of this paper, we have improved the accuracy of… More >

  • Open Access

    ARTICLE

    Identification of Weather Phenomena Based on Lightweight Convolutional Neural Networks

    Congcong Wang1, 2, 3, Pengyu Liu1, 2, 3, *, Kebin Jia1, 2, 3, Xiaowei Jia4, Yaoyao Li1, 2, 3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 2043-2055, 2020, DOI:10.32604/cmc.2020.010505 - 30 June 2020

    Abstract Weather phenomenon recognition plays an important role in the field of meteorology. Nowadays, weather radars and weathers sensor have been widely used for weather recognition. However, given the high cost in deploying and maintaining the devices, it is difficult to apply them to intensive weather phenomenon recognition. Moreover, advanced machine learning models such as Convolutional Neural Networks (CNNs) have shown a lot of promise in meteorology, but these models also require intensive computation and large memory, which make it difficult to use them in reality. In practice, lightweight models are often used to solve such More >

Displaying 1-10 on page 1 of 10. Per Page