Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    AutoSHARC: Feedback Driven Explainable Intrusion Detection with SHAP-Guided Post-Hoc Retraining for QoS Sensitive IoT Networks

    Muhammad Saad Farooqui1, Aizaz Ahmad Khattak2, Bakri Hossain Awaji3, Nazik Alturki4, Noha Alnazzawi5, Muhammad Hanif6,*, Muhammad Shahbaz Khan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4395-4439, 2025, DOI:10.32604/cmes.2025.072023 - 23 December 2025

    Abstract Quality of Service (QoS) assurance in programmable IoT and 5G networks is increasingly threatened by cyberattacks such as Distributed Denial of Service (DDoS), spoofing, and botnet intrusions. This paper presents AutoSHARC, a feedback-driven, explainable intrusion detection framework that integrates Boruta and LightGBM–SHAP feature selection with a lightweight CNN–Attention–GRU classifier. AutoSHARC employs a two-stage feature selection pipeline to identify the most informative features from high-dimensional IoT traffic and reduces 46 features to 30 highly informative ones, followed by post-hoc SHAP-guided retraining to refine feature importance, forming a feedback loop where only the most impactful attributes are More >

  • Open Access

    ARTICLE

    EventTracker Based Regression Prediction with Application to Composite Sensitive Microsensor Parameter Prediction

    Hongrong Wang1,2, Xinjian Li3,4, Xingjing She1, Wenjian Ma1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2039-2055, 2025, DOI:10.32604/cmes.2025.072572 - 26 November 2025

    Abstract In modern complex systems, real-time regression prediction plays a vital role in performance evaluation and risk warning. Nevertheless, existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions. To address these limitations, this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning. Specifically, a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs. On this basis, a mutual-information–based self-extraction mechanism is introduced to construct prior weights, which are then incorporated into a LightGBM prediction More >

  • Open Access

    ARTICLE

    GWO-LightGBM: A Hybrid Grey Wolf Optimized Light Gradient Boosting Model for Cyber-Physical System Security

    Adeel Munawar1, Muhammad Nadeem Ali2, Awais Qasim3, Byung-Seo Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1189-1211, 2025, DOI:10.32604/cmes.2025.071876 - 30 October 2025

    Abstract Cyber-physical systems (CPS) represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing, healthcare, and autonomous infrastructure. However, their extensive reliance on internet connectivity makes them increasingly susceptible to cyber threats, potentially leading to operational failures and data breaches. Furthermore, CPS faces significant threats related to unauthorized access, improper management, and tampering of the content it generates. In this paper, we propose an intrusion detection system (IDS) optimized for CPS environments using a hybrid approach by combining a nature-inspired feature selection scheme, such as Grey Wolf Optimization (GWO),… More >

  • Open Access

    ARTICLE

    Risk Indicator Identification for Coronary Heart Disease via Multi-Angle Integrated Measurements and Sequential Backward Selection

    Hui Qi1, Jingyi Lian2, Congjun Rao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 995-1028, 2025, DOI:10.32604/cmes.2025.069722 - 30 October 2025

    Abstract For the past few years, the prevalence of cardiovascular disease has been showing a year-on-year increase, with a death rate of 2/5. Coronary heart disease (CHD) rates have increased 41% since 1990, which is the number one disease endangering human health in the world today. The risk indicators of CHD are complicated, so selecting effective methods to screen the risk characteristics can make the risk prediction more efficient. In this paper, we present a comprehensive analysis of CHD risk indicators from both data and algorithmic levels, propose a method for CHD risk indicator identification based… More >

  • Open Access

    ARTICLE

    Fortifying Industry 4.0 Solar Power Systems: A Blockchain-Driven Cybersecurity Framework with Immutable LightGBM

    Asrar Mahboob1, Muhammad Rashad1, Ghulam Abbas1, Zohaib Mushtaq2, Tehseen Mazhar3,*, Ateeq Ur Rehman4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3805-3823, 2025, DOI:10.32604/cmc.2025.067615 - 23 September 2025

    Abstract This paper presents a novel blockchain-embedded cybersecurity framework for industrial solar power systems, integrating immutable machine learning (ML) with distributed ledger technology. Our contribution focused on three factors, Quantum-resistant feature engineering using the UNSW-NB15 dataset adapted for solar infrastructure anomalies. An enhanced Light Gradient Boosting Machine (LightGBM) classifier with blockchain-validated decision thresholds, and A cryptographic proof-of-threat (PoT) consensus mechanism for cyber attack verification. The proposed Immutable LightGBM model with majority voting and cryptographic feature encoding achieves 96.9% detection accuracy with 0.97 weighted average of precision, recall and F1-score, outperforming conventional intrusion detection systems (IDSs) by… More >

  • Open Access

    ARTICLE

    Explainable Diabetic Retinopathy Detection Using a Distributed CNN and LightGBM Framework

    Pooja Bidwai1,2, Shilpa Gite1,3, Biswajeet Pradhan4,*, Abdullah Almari5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2645-2676, 2025, DOI:10.32604/cmc.2025.061018 - 03 July 2025

    Abstract Diabetic Retinopathy (DR) is a critical disorder that affects the retina due to the constant rise in diabetics and remains the major cause of blindness across the world. Early detection and timely treatment are essential to mitigate the effects of DR, such as retinal damage and vision impairment. Several conventional approaches have been proposed to detect DR early and accurately, but they are limited by data imbalance, interpretability, overfitting, convergence time, and other issues. To address these drawbacks and improve DR detection accurately, a distributed Explainable Convolutional Neural network-enabled Light Gradient Boosting Machine (DE-ExLNN) is… More >

  • Open Access

    ARTICLE

    An Attention-Based Approach to Enhance the Detection and Classification of Android Malware

    Abdallah Ghourabi*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2743-2760, 2024, DOI:10.32604/cmc.2024.053163 - 15 August 2024

    Abstract The dominance of Android in the global mobile market and the open development characteristics of this platform have resulted in a significant increase in malware. These malicious applications have become a serious concern to the security of Android systems. To address this problem, researchers have proposed several machine-learning models to detect and classify Android malware based on analyzing features extracted from Android samples. However, most existing studies have focused on the classification task and overlooked the feature selection process, which is crucial to reduce the training time and maintain or improve the classification results. The… More >

  • Open Access

    ARTICLE

    Developing a Model for Parkinson’s Disease Detection Using Machine Learning Algorithms

    Naif Al Mudawi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4945-4962, 2024, DOI:10.32604/cmc.2024.048967 - 20 June 2024

    Abstract Parkinson’s disease (PD) is a chronic neurological condition that progresses over time. People start to have trouble speaking, writing, walking, or performing other basic skills as dopamine-generating neurons in some brain regions are injured or die. The patient’s symptoms become more severe due to the worsening of their signs over time. In this study, we applied state-of-the-art machine learning algorithms to diagnose Parkinson’s disease and identify related risk factors. The research worked on the publicly available dataset on PD, and the dataset consists of a set of significant characteristics of PD. We aim to apply… More >

  • Open Access

    ARTICLE

    Predicting Rock Burst in Underground Engineering Leveraging a Novel Metaheuristic-Based LightGBM Model

    Kai Wang1, Biao He2,*, Pijush Samui3, Jian Zhou4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 229-253, 2024, DOI:10.32604/cmes.2024.047569 - 16 April 2024

    Abstract Rock bursts represent a formidable challenge in underground engineering, posing substantial risks to both infrastructure and human safety. These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock, leading to severe seismic events and structural damage. Therefore, the development of reliable prediction models for rock bursts is paramount to mitigating these hazards. This study aims to propose a tree-based model—a Light Gradient Boosting Machine (LightGBM)—to predict the intensity of rock bursts in underground engineering. 322 actual rock burst cases are collected to constitute an exhaustive… More >

  • Open Access

    ARTICLE

    Securing Cloud Computing from Flash Crowd Attack Using Ensemble Intrusion Detection System

    Turke Althobaiti1,2, Yousef Sanjalawe3,*, Naeem Ramzan4

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 453-469, 2023, DOI:10.32604/csse.2023.039207 - 26 May 2023

    Abstract Flash Crowd attacks are a form of Distributed Denial of Service (DDoS) attack that is becoming increasingly difficult to detect due to its ability to imitate normal user behavior in Cloud Computing (CC). Botnets are often used by attackers to perform a wide range of DDoS attacks. With advancements in technology, bots are now able to simulate DDoS attacks as flash crowd events, making them difficult to detect. When it comes to application layer DDoS attacks, the Flash Crowd attack that occurs during a Flash Event is viewed as the most intricate issue. This is… More >

Displaying 1-10 on page 1 of 15. Per Page