Ying Li1, Bin Xue2, Wenxu Sun2, Junhua Wu2, Wenting Yu2, Meng Qin2, Wei Wang2, Yi Cao2,*
Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 147-147, 2019, DOI:10.32604/mcb.2019.07027
Abstract A key challenge in biomaterials research is to produce synthetic hydrogels that can replicate the diverse mechanical properties of the naturally occurring tissues for various biomedical applications, including tissue engineering, stem cell and cancer research, cell therapy, and immunomodulation. However, currently, the methods that can be used to control the mechanical properties of hydrogels are very limited and are mainly focused only on the elasticity of hydrogels. In this work, combining single molecule force spectroscopy, protein engineering and theoretical modeling, we show that synthetic protein hydrogels with predictable mechanical properties can be rationally designed using… More >