Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    REVIEW

    A Survey of Federated Learning: Advances in Architecture, Synchronization, and Security Threats

    Faisal Mahmud1, Fahim Mahmud2, Rashedur M. Rahman1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073519 - 12 January 2026

    Abstract Federated Learning (FL) has become a leading decentralized solution that enables multiple clients to train a model in a collaborative environment without directly sharing raw data, making it suitable for privacy-sensitive applications such as healthcare, finance, and smart systems. As the field continues to evolve, the research field has become more complex and scattered, covering different system designs, training methods, and privacy techniques. This survey is organized around the three core challenges: how the data is distributed, how models are synchronized, and how to defend against attacks. It provides a structured and up-to-date review of… More >

  • Open Access

    ARTICLE

    Evaluation of the Failure Impact of Jet Fire from Natural Gas Leakage on Parallel Pipelines

    Zezhi Wen1, Kai Zhang1, Shanlin Liang2, Liqiong Chen1,*, Zijian Xiong1

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.066408 - 08 January 2026

    Abstract Maintaining the structural integrity of parallel natural gas pipelines during leakage-induced jet fires remains a critical engineering challenge. Existing methods often fail to account for the complex interactions among heat transfer, material behavior, and pipeline geometry, which can lead to overly simplified and potentially unsafe assessments. To address these limitations, this study develops a multiphysics approach that integrates small-orifice leakage theory with detailed thermo-fluid-structural simulations. The proposed framework contributes to a more accurate failure analysis through three main components: (1) coupled modeling that tracks transient heat flow and stress development as fire conditions evolve; (2)… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Non-Uniform Pollutant Distribution in an Internal Space of Tank and the Efficacy of an Active Purification Strategy

    Xiaolong Li, Hui Chen, Yingwen Liu, Peng Yang*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1767-1788, 2025, DOI:10.32604/fhmt.2025.070537 - 31 December 2025

    Abstract Hazardous gas intrusion in tightly sealed and geometrically complex confined spaces, such as armored tanks, poses a critical threat to occupant health. The intricate internal structure of these systems may lead to non-intuitive pollutant transport pathways. However, the spatial and temporal evolution of these structures, as well as the intrinsic mechanisms of the purification systems, remain poorly elucidated. In this study, a high-fidelity, transient three-dimensional computational fluid dynamics (CFD) model was developed to simulate the leakage and dispersion of carbon monoxide (CO) and nitrogen dioxide (NO2) using the RNG k-ε turbulence model. Scenarios with and without… More > Graphic Abstract

    Numerical Analysis of Non-Uniform Pollutant Distribution in an Internal Space of Tank and the Efficacy of an Active Purification Strategy

  • Open Access

    PROCEEDINGS

    CO2 Migration Monitoring and Leakage Risk Assessment in Deep Saline Aquifers for Geological Sequestration

    Mingyu Cai1,2, Xingchun Li1,2, Kunfeng Zhang1,2,*, Shugang Yang1,2, Shuangxing Liu1,2, Ming Xue1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-2, 2025, DOI:10.32604/icces.2025.010490

    Abstract Deep saline aquifers account for more than 90% of the global theoretical geological CO2 sequestration capacity, making them the dominant choice for large-scale CO2 storage. These aquifers offer vast storage potential, especially in comparison to oil and gas reservoirs, which are often considered for CO2 geological sequestration. Despite their significant storage capacity, deep saline aquifers face several challenges that hinder their practical application. In particular, the lack of adequate geological infrastructure and exploration conditions for deep saline aquifers presents major obstacles to the effective monitoring of CO2 migration and predicting leakage risks. These challenges are compounded by… More >

  • Open Access

    REVIEW

    Enhancing Security in Large Language Models: A Comprehensive Review of Prompt Injection Attacks and Defenses

    Eleena Sarah Mathew*

    Journal on Artificial Intelligence, Vol.7, pp. 347-363, 2025, DOI:10.32604/jai.2025.069841 - 06 October 2025

    Abstract This review paper explores advanced methods to prompt Large Language Models (LLMs) into generating objectionable or unintended behaviors through adversarial prompt injection attacks. We examine a series of novel projects like HOUYI, Robustly Aligned LLM (RA-LLM), StruQ, and Virtual Prompt Injection that compel LLMs to produce affirmative responses to harmful queries. Several new benchmarks, such as PromptBench, AdvBench, AttackEval, INJECAGENT, and RobustnessSuite, have been created to evaluate the performance and resilience of LLMs against these adversarial attacks. Results show significant success rates in misleading models like Vicuna-7B, LLaMA-2-7B-Chat, GPT-3.5, and GPT-4. The review highlights limitations… More >

  • Open Access

    ARTICLE

    Effects of Soil Properties on the Diffusion of Hydrogen-Blended Natural Gas from an Underground Pipe

    Shiyao Peng1, Hanwen Zhang1, Chong Chai1, Shilong Xue2, Xiaobin Zhang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1099-1112, 2025, DOI:10.32604/fdmp.2025.060452 - 30 May 2025

    Abstract The diffusion of hydrogen-blended natural gas (HBNG) from buried pipelines in the event of a leak is typically influenced by soil properties, including porosity, particle size, temperature distribution, relative humidity, and the depth of the pipeline. This study models the soil as an isotropic porous medium and employs a CFD-based numerical framework to simulate gas propagation, accounting for the coupled effects of soil temperature and humidity. The model is rigorously validated against experimental data on natural gas diffusion in soil. It is then used to explore the impact of relevant parameters on the diffusion behavior… More >

  • Open Access

    ARTICLE

    Several Attacks on Attribute-Based Encryption Schemes

    Phi Thuong Le1, Huy Quoc Le2, Viet Cuong Trinh1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4741-4756, 2025, DOI:10.32604/cmc.2025.064486 - 19 May 2025

    Abstract Attribute-based encryption () is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes. is widely applied in cloud storage, file sharing, e-Health, and digital rights management. schemes rely on hard cryptographic assumptions such as pairings and others (pairing-free) to ensure their security against external and internal attacks. Internal attacks are carried out by authorized users who misuse their access to compromise security with potentially malicious intent. One common internal attack is the attribute collusion attack, in which users with different attribute keys collaborate to decrypt data they could not… More >

  • Open Access

    ARTICLE

    PIAFGNN: Property Inference Attacks against Federated Graph Neural Networks

    Jiewen Liu1, Bing Chen1,2,*, Baolu Xue1, Mengya Guo1, Yuntao Xu1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1857-1877, 2025, DOI:10.32604/cmc.2024.057814 - 17 February 2025

    Abstract Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack… More >

  • Open Access

    ARTICLE

    Far-Field Behavior of Supercritical CO2 Being Dispersed Due to Leakage from Pipelines

    Yanbo Shao1, Xuewen Cao1,*, Wei You1, Shan Zhao1, Zilong Nan2, Jiang Bian1,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2867-2885, 2024, DOI:10.32604/fdmp.2024.053774 - 23 December 2024

    Abstract Transporting massive quantities of carbon dioxide through a pipeline in its supercritical state is extremely convenient. Because of the unique properties of supercritical carbon dioxide, however, leakage occurring in such conditions can be extremely intricate, resulting in the dispersion area following leakage being influenced by numerous factors. In this study, this problem is addressed in the frame of the so-called Unified Dispersion Model (UDM), and various influential parameters are considered, namely, leakage pressure, leakage temperature, leakage aperture, leakage angle, atmospheric stability, wind speed, and surface roughness. The results show that the supercritical carbon dioxide dispersion More >

  • Open Access

    PROCEEDINGS

    Leakage Diffusion and Monitor of Hydrogen-Blended Natural Gas Pipeline in Utility Tunnel

    Pengfei Duan1,*, Luling Li1, Jianhui Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012431

    Abstract The supply of hydrogen-blended natural gas to civil and industrial users can assist downstream firm to achieve carbon emission reduction, and ensure energy security as an alternative gas source. This application mode has been widely concerned by urban gas enterprises. This paper focuses on the leakage problem of hydrogen-blended pipelines in utility tunnel due to corrosion and other reasons. Using dimensional analysis method, a model experiment is designed to verify that the three-dimensional compressible fluid model coupled with transport equations can effectively simulate the concentration change of hydrogen-blended natural gas after leakage in the utility… More >

Displaying 1-10 on page 1 of 35. Per Page