Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    PROCEEDINGS

    Leakage Diffusion and Monitor of Hydrogen-Blended Natural Gas Pipeline in Utility Tunnel

    Pengfei Duan1,*, Luling Li1, Jianhui Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012431

    Abstract The supply of hydrogen-blended natural gas to civil and industrial users can assist downstream firm to achieve carbon emission reduction, and ensure energy security as an alternative gas source. This application mode has been widely concerned by urban gas enterprises. This paper focuses on the leakage problem of hydrogen-blended pipelines in utility tunnel due to corrosion and other reasons. Using dimensional analysis method, a model experiment is designed to verify that the three-dimensional compressible fluid model coupled with transport equations can effectively simulate the concentration change of hydrogen-blended natural gas after leakage in the utility… More >

  • Open Access

    ARTICLE

    Numerical Simulation and Entropy Production Analysis of Centrifugal Pump with Various Viscosity

    Zhenjiang Zhao1, Lei Jiang1, Ling Bai2,*, Bo Pan3, Ling Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1111-1136, 2024, DOI:10.32604/cmes.2024.055399 - 27 September 2024

    Abstract The fluid’s viscosity significantly affects the performance of a centrifugal pump. The entropy production method and leakage are employed to analyze the performance changes under various viscosities by numerical simulation and validated by experiments. The results showed that increasing viscosity reduces both the pump head and efficiency. In addition, the optimal operating point shifts to the left. Leakage is influenced by vortex distribution in the front chamber and boundary layer thickness in wear-ring clearance, leading to an initial increase and subsequent decrease in leakage with increasing viscosity. The total entropy production inside the pump rises More >

  • Open Access

    ARTICLE

    CFD Investigation of Diffusion Law and Harmful Boundary of Buried Natural Gas Pipeline in the Mountainous Environment

    Liqiong Chen1, Kui Zhao1, Kai Zhang1,*, Duo Xv1, Hongxvan Hu2, Guoguang Ma1, Wenwen Zhan3

    Energy Engineering, Vol.121, No.8, pp. 2143-2165, 2024, DOI:10.32604/ee.2024.049362 - 19 July 2024

    Abstract The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment. In this study, computational fluid dynamics (CFD) method was applied to investigate the diffusion law and hazard range of buried natural gas pipeline leakage in mountainous environment. Based on cloud chart, concentration at the monitoring site and hazard range of lower explosion limit (LEL) and upper explosion limit (UEL), the influences of leakage hole direction and shape, soil property, burial depth, obstacle type on the diffusion law… More >

  • Open Access

    ARTICLE

    Side-Channel Leakage Analysis of Inner Product Masking

    Yuyuan Li1,2, Lang Li1,2,*, Yu Ou1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1245-1262, 2024, DOI:10.32604/cmc.2024.049882 - 25 April 2024

    Abstract The Inner Product Masking (IPM) scheme has been shown to provide higher theoretical security guarantees than the Boolean Masking (BM). This scheme aims to increase the algebraic complexity of the coding to achieve a higher level of security. Some previous work unfolds when certain (adversarial and implementation) conditions are met, and we seek to complement these investigations by understanding what happens when these conditions deviate from their expected behaviour. In this paper, we investigate the security characteristics of IPM under different conditions. In adversarial condition, the security properties of first-order IPMs obtained through parametric characterization More >

  • Open Access

    ARTICLE

    Mathematical Modelling and Simulations of Active Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 125-139, 2023, DOI:10.32381/JPM.2023.40.3-4.1

    Abstract A one dimensional isothermal model is proposed by modelling the kinetics of methanol transport at anode flow channel (AFC), membrane and cathode catalyst layer of direct methanol fuel cell (DMFC). Analytical model is proposed to predict methanol cross-over rate through the electrolyte membrane and cell performance. The model presented in this paper considered methanol diffusion and electrochemical oxidation at the anode and cathode channels. The analytical solution of the proposed model was simulated in a MATLAB environment to obtain the polarization curve and leakage current. The effect of methanol concentration on cell voltage and leakage More >

  • Open Access

    REVIEW

    Multi-Robot Privacy-Preserving Algorithms Based on Federated Learning: A Review

    Jiansheng Peng1,2,*, Jinsong Guo1, Fengbo Bao1, Chengjun Yang2, Yong Xu2, Yong Qin2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2971-2994, 2023, DOI:10.32604/cmc.2023.041897 - 26 December 2023

    Abstract The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019. With the development of sensors and smart devices, factories and enterprises have accumulated a large amount of data in their daily production, which creates extremely favorable conditions for robots to perform machine learning. However, in recent years, people’s awareness of data privacy has been increasing, leading to the inability to circulate data between different enterprises, resulting in the emergence of data silos. The emergence of federated learning provides a feasible solution to this problem, and the combination of… More >

  • Open Access

    ARTICLE

    Evaluation of the Air Leakage Flowrate in Sintering Processes

    Jin Cai1, Xiangwei Kong1,*, Mingzhu Yu1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2791-2812, 2023, DOI:10.32604/fdmp.2023.029692 - 18 September 2023

    Abstract Iron ore sintering is a pre-treatment technology by which ore fines are converted into porous and permeable sinters, which are the used in blast furnaces. This process can be adversely affected by air leakage phenomena of various types. As experimental measurements are relatively difficult and often scarcely reliable, here a theoretical model based on typical fluid-dynamic concepts and relationships is elaborated. Through the analysis of two extreme cases, namely, those in which leakage is due to a small hole or a full rupture, a generalized hole-bed model is introduced, which for the first time also More > Graphic Abstract

    Evaluation of the Air Leakage Flowrate in Sintering Processes

  • Open Access

    ARTICLE

    Quantitative Detection of Corrosion State of Concrete Internal Reinforcement Based on Metal Magnetic Memory

    Zhongguo Tang1, Haijin Zhuo1, Beian Li1, Xiaotao Ma2, Siyu Zhao2, Kai Tong2,*

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 407-431, 2023, DOI:10.32604/sdhm.2023.026033 - 07 September 2023

    Abstract Corrosion can be very harmful to the service life and several properties of reinforced concrete structures. The metal magnetic memory (MMM) method, as a newly developed spontaneous magnetic flux leakage (SMFL) non-destructive testing (NDT) technique, is considered a potentially viable method for detecting corrosion damage in reinforced concrete members. To this end, in this paper, the indoor electrochemical method was employed to accelerate the corrosion of outsourced concrete specimens with different steel bar diameters, and the normal components BBz and its gradient of the SMFL fields on the specimen surfaces were investigated based on the metal… More >

  • Open Access

    ARTICLE

    Speed Measurement Feasibility by Eddy Current Effect in the High-Speed MFL Testing

    Zhaoting Liu1, Jianbo Wu1,*, Sha He2, Xin Rao3, Shiqiang Wang2, Shen Wang1, Wei Wei4

    Structural Durability & Health Monitoring, Vol.17, No.4, pp. 299-314, 2023, DOI:10.32604/sdhm.2023.022554 - 02 August 2023

    Abstract It is known that eddy current effect has a great influence on magnetic flux leakage testing (MFL). Usually, contact-type encoder wheels are used to measure MFL testing speed to evaluate the effect and further compensate testing signals. This speed measurement method is complicated, and inevitable abrasion and occasional slippage will reduce the measurement accuracy. In order to solve this problem, based on eddy current effect due to the relative movement, a speed measurement method is proposed, which is contactless and simple. In the high-speed MFL testing, eddy current induced in the specimen will cause an More > Graphic Abstract

    Speed Measurement Feasibility by Eddy Current Effect in the High-Speed MFL Testing

  • Open Access

    ARTICLE

    Seed Priming with MgCl2, CaCl2, and ZnCl2 as a Biofortification Based-Approach Induces Changes in Anise Seedlings Emergence

    Sibel Day*, Nilüfer Koçak-Şahin

    Phyton-International Journal of Experimental Botany, Vol.92, No.8, pp. 2461-2471, 2023, DOI:10.32604/phyton.2023.029920 - 25 June 2023

    Abstract Aromatic and medicinal plant species having small seeds have field emergence problems due to low nutrient supply. Therefore, Pimpinella anisum seeds were hydro and osmoprimed with 100 mM MgCl2, CaCl2, and ZnCl2, for 2, 4, and 8 h each to compare their growth attributes during germination and seedling establishment stages. Nontreated seeds were used as control. Both hydro and osmo primed seeds were dried for 48 h before, they were sown in plastic trays in growth room conditions to see the impact of treatments on seedling emergence and growth. The maximum root length (12.90 cm), fresh weight (256.30… More >

Displaying 1-10 on page 1 of 25. Per Page