Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Performance of Deep Learning Techniques in Leaf Disease Detection

    Robertas Damasevicius1,*, Faheem Mahmood2, Yaseen Zaman3, Sobia Dastgeer2, Sajid Khan2

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1349-1366, 2024, DOI:10.32604/csse.2024.050359 - 13 September 2024

    Abstract Plant diseases must be identified as soon as possible since they have an impact on the growth of the corresponding species. Consequently, the identification of leaf diseases is essential in this field of agriculture. Diseases brought on by bacteria, viruses, and fungi are a significant factor in reduced crop yields. Numerous machine learning models have been applied in the identification of plant diseases, however, with the recent developments in deep learning, this field of study seems to hold huge potential for improved accuracy. This study presents an effective method that uses image processing and deep… More >

  • Open Access

    ARTICLE

    Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models

    Mahmood A. Mahmood1,2,*, Khalaf Alsalem1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3431-3448, 2024, DOI:10.32604/cmc.2024.047604 - 26 March 2024

    Abstract Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses. Early detection of these diseases is essential for effective management. We propose a novel transformed wavelet, feature-fused, pre-trained deep learning model for detecting olive leaf diseases. The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images. The model has four main phases: preprocessing using data augmentation, three-level wavelet transformation, learning using pre-trained deep learning models, and a fused deep learning model. In the preprocessing phase, the image dataset is… More >

  • Open Access

    ARTICLE

    MDCN: Modified Dense Convolution Network Based Disease Classification in Mango Leaves

    Chirag Chandrashekar1, K. P. Vijayakumar1,*, K. Pradeep1, A. Balasundaram1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2511-2533, 2024, DOI:10.32604/cmc.2024.047697 - 27 February 2024

    Abstract The most widely farmed fruit in the world is mango. Both the production and quality of the mangoes are hampered by many diseases. These diseases need to be effectively controlled and mitigated. Therefore, a quick and accurate diagnosis of the disorders is essential. Deep convolutional neural networks, renowned for their independence in feature extraction, have established their value in numerous detection and classification tasks. However, it requires large training datasets and several parameters that need careful adjustment. The proposed Modified Dense Convolutional Network (MDCN) provides a successful classification scheme for plant diseases affecting mango leaves. More >

  • Open Access

    ARTICLE

    Deep Convolutional Neural Networks for South Indian Mango Leaf Disease Detection and Classification

    Shaik Thaseentaj, S. Sudhakar Ilango*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3593-3618, 2023, DOI:10.32604/cmc.2023.042496 - 26 December 2023

    Abstract The South Indian mango industry is confronting severe threats due to various leaf diseases, which significantly impact the yield and quality of the crop. The management and prevention of these diseases depend mainly on their early identification and accurate classification. The central objective of this research is to propose and examine the application of Deep Convolutional Neural Networks (CNNs) as a potential solution for the precise detection and categorization of diseases impacting the leaves of South Indian mango trees. Our study collected a rich dataset of leaf images representing different disease classes, including Anthracnose, Powdery… More >

  • Open Access

    ARTICLE

    Real-Time Multiple Guava Leaf Disease Detection from a Single Leaf Using Hybrid Deep Learning Technique

    Javed Rashid1,2, Imran Khan1, Ghulam Ali3, Shafiq ur Rehman4, Fahad Alturise5, Tamim Alkhalifah5,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1235-1257, 2023, DOI:10.32604/cmc.2023.032005 - 22 September 2022

    Abstract The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments, soil conditions and higher human consumption. It is cultivated in vast areas of Asian and Non-Asian countries, including Pakistan. The guava plant is vulnerable to diseases, specifically the leaves and fruit, which result in massive crop and profitability losses. The existing plant leaf disease detection techniques can detect only one disease from a leaf. However, a single leaf may contain symptoms of multiple diseases. This study has proposed a hybrid deep learning-based framework for the real-time detection… More >

  • Open Access

    ARTICLE

    Sailfish Optimizer with EfficientNet Model for Apple Leaf Disease Detection

    Mazen Mushabab Alqahtani1, Ashit Kumar Dutta2, Sultan Almotairi3, M. Ilayaraja4, Amani Abdulrahman Albraikan5, Fahd N. Al-Wesabi6,7,*, Mesfer Al Duhayyim8

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 217-233, 2023, DOI:10.32604/cmc.2023.025280 - 22 September 2022

    Abstract Recent developments in digital cameras and electronic gadgets coupled with Machine Learning (ML) and Deep Learning (DL)-based automated apple leaf disease detection models are commonly employed as reasonable alternatives to traditional visual inspection models. In this background, the current paper devises an Effective Sailfish Optimizer with EfficientNet-based Apple Leaf disease detection (ESFO-EALD) model. The goal of the proposed ESFO-EALD technique is to identify the occurrence of plant leaf diseases automatically. In this scenario, Median Filtering (MF) approach is utilized to boost the quality of apple plant leaf images. Moreover, SFO with Kapur's entropy-based segmentation technique More >

  • Open Access

    ARTICLE

    Feature Extraction and Classification of Plant Leaf Diseases Using Deep Learning Techniques

    K. Anitha1, S. Srinivasan2,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 233-247, 2022, DOI:10.32604/cmc.2022.026542 - 18 May 2022

    Abstract In India’s economy, agriculture has been the most significant contributor. Despite the fact that agriculture’s contribution is decreasing as the world’s population grows, it continues to be the most important source of employment with a little margin of difference. As a result, there is a pressing need to pick up the pace in order to achieve competitive, productive, diverse, and long-term agriculture. Plant disease misinterpretations can result in the incorrect application of pesticides, causing crop harm. As a result, early detection of infections is critical as well as cost-effective for farmers. To diagnose the disease… More >

  • Open Access

    ARTICLE

    Artificial Intelligence-Based Fusion Model for Paddy Leaf Disease Detection and Classification

    Ahmed S. Almasoud1, Abdelzahir Abdelmaboud2, Taiseer Abdalla Elfadil Eisa3, Mesfer Al Duhayyim4, Asma Abbas Hassan Elnour5, Manar Ahmed Hamza6,*, Abdelwahed Motwakel6, Abu Sarwar Zamani6

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1391-1407, 2022, DOI:10.32604/cmc.2022.024618 - 24 February 2022

    Abstract In agriculture, rice plant disease diagnosis has become a challenging issue, and early identification of this disease can avoid huge loss incurred from less crop productivity. Some of the recently-developed computer vision and Deep Learning (DL) approaches can be commonly employed in designing effective models for rice plant disease detection and classification processes. With this motivation, the current research work devises an Efficient Deep Learning based Fusion Model for Rice Plant Disease (EDLFM-RPD) detection and classification. The aim of the proposed EDLFM-RPD technique is to detect and classify different kinds of rice plant diseases in… More >

  • Open Access

    ARTICLE

    Designing and Evaluating a Collaborative Knowledge Management Framework for Leaf Disease Detection

    Komal Bashir1,*, Mariam Rehman2, Afnan Bashir3, Faria Kanwal1

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 751-777, 2022, DOI:10.32604/csse.2022.022247 - 04 January 2022

    Abstract Knowledge Management (KM) has become a dynamic concept for inquiry in research. The management of knowledge from multiple sources requires a systematic approach that can facilitate capturing all important aspects related to a particular discipline, several KM frameworks have been designed to serve this purpose. This research aims to propose a Collaborative Knowledge Management (CKM) Framework that bridges gaps and overcomes weaknesses in existing frameworks. The paper also validates the framework by evaluating its effectiveness for the agriculture sector of Pakistan. A software LCWU aKMS was developed which serves as a practical implementation of the… More >

  • Open Access

    ARTICLE

    Paddy Leaf Disease Detection Using an Optimized Deep Neural Network

    Shankarnarayanan Nalini1,*, Nagappan Krishnaraj2, Thangaiyan Jayasankar3, Kalimuthu Vinothkumar4, Antony Sagai Francis Britto5, Kamalraj Subramaniam6, Chokkalingam Bharatiraja7

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1117-1128, 2021, DOI:10.32604/cmc.2021.012431 - 22 March 2021

    Abstract Precision Agriculture is a concept of farm management which makes use of IoT and networking concepts to improve the crop. Plant diseases are one of the underlying causes in the decrease in the number of quantity and quality of the farming crops. Recognition of diseases from the plant images is an active research topic which makes use of machine learning (ML) approaches. A novel deep neural network (DNN) classification model is proposed for the identification of paddy leaf disease using plant image data. Classification errors were minimized by optimizing weights and biases in the DNN… More >

Displaying 1-10 on page 1 of 10. Per Page