Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Deep Learning-Based Prediction of Seepage Flow in Soil-Like Porous Media

    Zhenzhen Shen1,2, Kang Yang2, Dengfeng Wei2, Quansheng Liang2, Zhenpeng Ma2, Hong Wang2, Keyu Wang2, Chunwei Zhang2, Xiaohu Yang3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2741-2760, 2025, DOI:10.32604/fdmp.2025.070395 - 01 December 2025

    Abstract The rapid prediction of seepage mass flow in soil is essential for understanding fluid transport in porous media. This study proposes a new method for fast prediction of soil seepage mass flow by combining mesoscopic modeling with deep learning. Porous media structures were generated using the Quartet Structure Generation Set (QSGS) method, and a mesoscopic-scale seepage calculation model was applied to compute flow rates. These results were then used to train a deep learning model for rapid prediction. The analysis shows that larger average pore diameters lead to higher internal flow velocities and mass flow More >

  • Open Access

    ARTICLE

    Simulation of Dynamic Evolution for Oil-in-Water Emulsion Demulsification Controlled by the Porous Media and Shear Action

    Heping Wang1,*, Ying Lu1, Yanggui Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 391-410, 2025, DOI:10.32604/cmes.2025.069763 - 30 October 2025

    Abstract With oily wastewater treatment emerging as a critical global issue, porous media and shear forces have received significant attention as environmentally friendly methods for oil–water separation. This study systematically simulates the dynamics of oil-in-water emulsion demulsification under porous media and shear forces using a color-gradient Lattice Boltzmann model. The morphological evolution and demulsification efficiency of emulsions are governed by porous media and shear forces. The effects of porosity and shear velocity on demulsification are quantitatively analyzed. (1) The presence of porous media enhances the ability of the flow field to trap oil droplets, with lower More >

  • Open Access

    ARTICLE

    Temperature-Difference Driven Aggregation of Pulling- and Pushing-Typed Microswimmers in a Channel

    Jingwen Wang, Ming Xu, Deming Nie*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2225-2251, 2025, DOI:10.32604/fdmp.2025.068327 - 30 September 2025

    Abstract This study employs the fluctuating-lattice Boltzmann method to investigate temperature-gradient-driven aggregation of microswimmers, specifically, pulling-type (pullers) and pushing-type (pushers), within a fluid confined by two channel walls. The analysis incorporates the Brownian motion of both swimmer types and introduces key dimensionless parameters, including the swimming Reynolds, Prandtl, and Lewis numbers, to characterize the influences of self-propulsion strength, thermal diffusivity, and Brownian diffusivity on aggregation efficiency and behavior. Our findings reveal that pushers tend to aggregate either along the channel centerline or near the channel walls under conditions of thermal gradients imposed by heated or cooled More >

  • Open Access

    ARTICLE

    Two-Dimensional Numerical Study on the Flow Past Two Staggered Cylinders in a Channel

    Zenan Lai, Deming Nie*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2131-2148, 2025, DOI:10.32604/fdmp.2025.068091 - 30 September 2025

    Abstract The lattice Boltzmann method (LBM) is employed to simulate flow around two staggered cylinders within a confined channel. The numerical model is validated against existing experimental data by comparing drag coefficients and Strouhal numbers in the single-cylinder configuration. The study systematically investigates the influence of vertical () and horizontal () spacing between the cylinders, as well as the Reynolds number ( = 0.1–160), on the hydrodynamic forces, streamline patterns, and vortex dynamics. Results indicate that reducing the horizontal spacing  suppresses flow separation behind the upstream cylinder, while either excessively small or large vertical spacing  diminishes separation… More >

  • Open Access

    ARTICLE

    Lattice Boltzmann-Based Numerical Simulation of Laser Welding in Solar Panel Busbars

    Dongfang Li1, Mingliang Zheng2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1955-1968, 2025, DOI:10.32604/fdmp.2025.069254 - 12 September 2025

    Abstract To address the limitations of traditional finite element methods, particularly the continuum assumption and difficulties in tracking the solid-liquid interface, this study introduces a lattice Boltzmann-based mathematical and physical model to simulate flow and heat transfer in the laser welding molten pool of tin-coated copper used in solar panel busbars (a thin strip or wire of conductive metal embedded on the surface of a solar cell to collect and conduct the electricity generated by the photovoltaic cell). The model incorporates key external forces, including surface tension, solid-liquid interface tension, and recoil pressure. A moving and… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Gas-Water Two-Phase Flow in a Proppant-Filled Layer

    Jian Yang1, Xinghao Gou1, Jiayi Sun2, Fei Liu1, Xiaojin Zhou1, Xu Liu1, Tao Zhang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1935-1954, 2025, DOI:10.32604/fdmp.2025.066730 - 12 September 2025

    Abstract Shale gas production involves complex gas-water two-phase flow, with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency. In this study, 3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography (CT) scanning. These models were used to develop a numerical simulation framework based on the lattice Boltzmann method (LBM), enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions. Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Aerodynamic Performance of an Ahmed Body Fitted with Spoilers of Different Opening Areas

    Haichao Zhou*, Wei Zhang, Tinghui Huang, Haoran Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1113-1131, 2025, DOI:10.32604/fdmp.2025.064991 - 30 May 2025

    Abstract The configuration of a spoiler plays a crucial role in the aerodynamics of a vehicle. In particular, investigating the impact of spoiler design on aerodynamic performance is essential for effectively reducing drag and optimizing efficiency. This study focuses on the 35° Ahmed body as the test model and examines six different spoiler types mounted on its slant surface. Using the Lattice Boltzmann Method (LBM) in XFlow and the Large Eddy Simulation (LES) technique, the aerodynamic effects of these spoilers were analyzed. The numerical approach was validated against published experimental data. Results indicate that aerodynamic drag More >

  • Open Access

    ARTICLE

    Characterization of Pore Structure and Simulation of Pore-Scale Flow in Tight Sandstone Reservoirs

    Min Feng*, Long Wang, Lei Sun, Bo Yang, Wei Wang, Jianning Luo, Yan Wang, Ping Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 573-587, 2025, DOI:10.32604/fdmp.2024.056421 - 01 April 2025

    Abstract This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence the permeability of tight sandstone reservoirs, with a particular focus on the Paleozoic reservoirs in the Qingshimao Gas Field. Using CT scans of natural core samples, a three-dimensional digital core was constructed. The maximum ball method was applied to extract a related pore network model, and the pore structure characteristics of the core samples, such as pore radius, throat radius, pore volume, and coordination number, were quantitatively evaluated. The analysis revealed a normally distributed pore radius, suggesting a high degree… More >

  • Open Access

    ARTICLE

    Thermal Assessment of a Differentially Heated Nanofluid-Filled Cavity Containing an Obstacle

    Abdelilah Makaoui1, El Bachir Lahmer1,*, Jaouad Benhamou1,2, Mohammed Amine Moussaoui1, Ahmed Mezrhab1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 207-230, 2025, DOI:10.32604/fhmt.2024.060166 - 26 February 2025

    Abstract This study focuses on numerically investigating thermal behavior within a differentially heated cavity filled with nanofluid with and without obstacles. Numerical comparison with previous studies proves the consistency and efficacy of the lattice Boltzmann method associated with a single relaxation time and its possibility of studying the nanofluid and heat transfer with high accuracy. Key parameters, including nanoparticle type and concentration, Rayleigh number, fluid basis, and obstacle position and dimension, were examined to identify optimal conditions for enhancing heat transfer quality. Principal findings indicated that increasing the Rayleigh number boosts buoyancy forces and alters vortex More > Graphic Abstract

    Thermal Assessment of a Differentially Heated Nanofluid-Filled Cavity Containing an Obstacle

  • Open Access

    ARTICLE

    Imbibition Front and Phase Distribution in Shale Based on Lattice Boltzmann Method

    Li Lu1,2,3, Yadong Huang2,4, Kuo Liu2, Xuhui Zhang3,5, Xiaobing Lu3,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2173-2190, 2025, DOI:10.32604/cmes.2025.059045 - 27 January 2025

    Abstract To study the development of imbibition such as the imbibition front and phase distribution in shale, the Lattice Boltzmann Method (LBM) is used to study the imbibition processes in the pore-throat network of shale. Through dimensional analysis, four dimensionless parameters affecting the imbibition process were determined. A color gradient model of LBM was used in computation based on a real core pore size distribution. The numerical results show that the four factors have great effects on imbibition. The impact of each factor is not monotonous. The imbibition process is the comprehensive effect of all aspects. More >

Displaying 1-10 on page 1 of 45. Per Page