Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    NUMERICAL STUDY ON HEAT TRANSFER CHARACTERISTICS OF CORRUGATED TUBE PHASE CHANGE THERMAL ENERGY STORAGE UNIT

    Kun Zhanga,b,* , Zhiyong Lia,b, Jia Yaoa,b

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-8, 2022, DOI:10.5098/hmt.19.5

    Abstract Detailed numerical analysis is presented for heat transfer characteristics of charging or discharging process in phase change thermal energy storage unit with inner corrugated tube. The results indicated that the charging or discharging rate of phase change material (PCM) for the case of inner corrugated tube is obviously higher than that in unit with inner plain tube due to the increasing heat transfer surface. The heat transfer rate increase with the increasing mass flow rate. However, when the mass flow rate of heat transfer fluid (HTF) is greater than 0.0315kg/s, the charge and discharge time More >

  • Open Access

    ARTICLE

    Experimental Investigation on Prototype Latent Heat Thermal Battery Charging and Discharging Function Integrated with Solar Collector

    Farhood Sarrafzadeh Javadi1, Hendrik Simon Cornelis Metselaar1,2,*, Poo Balan Ganesan1

    Energy Engineering, Vol.119, No.4, pp. 1587-1610, 2022, DOI:10.32604/ee.2022.020304 - 23 May 2022

    Abstract This paper reports the performance investigation of a newly developed Latent Heat Thermal Battery (LHTB) integrated with a solar collector as the main source of heat. The LHTB is a new solution in the field of thermal storage and developed based on the battery concept in terms of recharge ability, portability and usability as a standalone device. It is fabricated based on the thermal battery storage concept and consists of a plate-fin and tube heat exchanger located inside the battery casing and paraffin wax which is used as a latent heat storage material. Solar thermal… More >

  • Open Access

    ARTICLE

    Investigation of the Melting Coupled Natural Convection of Nano Phase Change Material: A Fan Less Cooling of Heat Sources

    Mustapha FARAJI1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.1, pp. 19-36, 2017, DOI:10.3970/fdmp.2017.013.019

    Abstract A two-dimensional numerical model that accounts for heat transfer by conduction and natural convection in the molten region of nano enhanced Phase Change Material (PCM) is performed. Numerical investigations were conducted using an enthalpy- porosity method in order to examine the impact of the dispersion of copper (CuO) nanoparticles on the heat source temperature and the effect on the heat sink secured working time and the melting rate. Results show that heat spreads more easily along the conducting plate and to the PCM and, consequently, the PCM melts rapidly and the heat source is efficiency More >

  • Open Access

    ARTICLE

    Numerical Study of Melting Coupled Natural Convection Around Localized Heat Sources

    Mustapha Faraji1, El Alami Mustapha, Najam Mostafa

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.2, pp. 279-298, 2014, DOI:10.3970/fdmp.2014.010.279

    Abstract A study is reported of heat transfer and melting in a fan-less thermal management system consisting of an insulated horizontal cavity filled with a phase change material (PCM) and heated from below by a conducting plate supporting three identical protruding heat sources. Such a PCM enclosure can be used as a heat sink for the cooling of electronic components. The advantage of this cooling strategy is that PCMs characterized by high energy storage density and small transition temperature interval, are able to store a high amount of heat (thereby providing efficient passive cooling). A two-dimensional More >

Displaying 1-10 on page 1 of 4. Per Page