Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Numerical Predictions of Laminar Forced Convection Heat Transfer with and without Buoyancy Effects from an Isothermal Horizontal Flat Plate to Supercritical Nitrogen

    K. S. Rajendra Prasad1, Sathya Sai2, T. R. Seetharam3, Adithya Garimella1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 889-917, 2024, DOI:10.32604/fhmt.2024.047703 - 11 July 2024

    Abstract Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards. Computations are performed by varying the value of from 5 to 30 K and ratio from 1.1 to 1.5. Variation of all the thermophysical properties of supercritical Nitrogen is considered. The wall temperatures are chosen in such a way that two values of T are less than is the temperature at which the fluid has a maximum value of C for the given pressure), More >

  • Open Access

    ARTICLE

    EFFECTS OF VISCOUS DISSIPATION AND AXIAL HEAT CONDUCTION ON FORCED CONVECTION DUCT FLOW OF HERSCHEL-BULKLEY FLUID WITH UNIFORM WALL TEMPERATURE OR CONVECTIVE BOUNDARY CONDITIONS

    Rabha Khatyr*, Jaafar Khalid Naciri

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-8, 2022, DOI:10.5098/hmt.19.23

    Abstract The aim is to study the asymptotic behavior of the temperature field for the laminar forced convection of a Herschel-Bulkley fluid flowing in a circular duct considering both viscous dissipation and axial heat conduction. The asymptotic bulk and mixing Nusselt numbers and the asymptotic bulk and mixing temperature distribution are evaluated analytically in the cases of uniform wall temperature and convection with an external isothermal fluid. In particular, it has been proved that the fully developed value of Nusselt number for convective boundary conditions is independent of the Biot number and is equal to the More >

  • Open Access

    ARTICLE

    LAMINAR FORCED CONVECTION AND PERFORMANCE EVALUATION IN A SQUARE DUCT HEAT EXCHANGER PLACED WITH WAVY THIN RIB

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-15, 2020, DOI:10.5098/hmt.15.13

    Abstract Simulated examinations on convective heat transfer and flow topology in a square duct heat exchanger placed with wavy thin rib (WTR) are presented. The influences of WTR heights, pitch distances and flow directions on flow and heat transfer characteristics are investigated for the laminar flow regime at the inlet condition (Re = 100 – 2000). The finite volume method (SIMPLE algorithm) is picked to analyze the numerical problem. The numerical validations; grid independence and verification of the smooth duct, are presented. The simulated results of the heat exchanger duct placed with WTR are reported in More >

  • Open Access

    ARTICLE

    EFFECTS OF VISCOUS DISSIPATION AND AXIAL HEAT CONDUCTION ON FORCED CONVECTION FLOW OF HERSCHELBULKLEY FLUID IN CIRCULAR DUCT WITH AXIALLY VARIABLE WALL HEAT FLUX

    Rabha Khatyr*, Jaafar Khalid Naciri

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-11, 2020, DOI:10.5098/hmt.15.5

    Abstract The present study focuses on the effects of viscous dissipation and axial heat conduction on the asymptotic behavior of the laminar forced convection in a circular duct for a Herschel-Bulkley fluid with variable wall heat flux. Analytical asymptotic solutions are presented for the case of axial variations of the wall heat flux, with finite non-vanishing values at infinity along the flow direction. The asymptotic bulk and mixing Nusselt numbers and the asymptotic bulk and mixing temperature distributions are evaluated analytically in the case of axially variable wall heat flux for which polynomial and logarithmic functions More >

  • Open Access

    ARTICLE

    LAMINAR FORCED CONVECTION HEAT AND MASS TRANSFER IN A VENTURI TUBE WITH WETTED WALLS

    S.W. Igoa,*, D.J. Bathiébob, K. Palma, K. N’wuitchac, B. Zeghmatid, X. Chesneaud

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-7, 2011, DOI:10.5098/hmt.v2.3.3007

    Abstract A combined heat and mass transfer in laminar forced convection flow in a rectangular venturi tube have been numerically simulated. A transformation has been used to transform the irregular profile of the venturi walls into a straight line. Transfers equations are solved using finite volume method, Gauss and Thomas algorithms. The influences of venturi effect, inlet Reynolds number and venturi diameter ratio on the heat and mass transfer are discussed in detail. Results presented as pressure gradient, Nusselt and Sherwood numbers profiles, velocity patterns and isotherms show that the throat play an important role on More >

Displaying 1-10 on page 1 of 5. Per Page