Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    APPLE_YOLO: Apple Detection Method Based on Channel Pruning and Knowledge Distillation in Complicated Environments

    Xin Ma1,2, Jin Lei3,4,*, Chenying Pei4, Chunming Wu4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069353 - 09 December 2025

    Abstract This study proposes a lightweight apple detection method employing cascaded knowledge distillation (KD) to address the critical challenges of excessive parameters and high deployment costs in existing models. We introduce a Lightweight Feature Pyramid Network (LFPN) integrated with Lightweight Downsampling Convolutions (LDConv) to substantially reduce model complexity without compromising accuracy. A Lightweight Multi-channel Attention (LMCA) mechanism is incorporated between the backbone and neck networks to effectively suppress complex background interference in orchard environments. Furthermore, model size is compressed via Group_Slim channel pruning combined with a cascaded distillation strategy. Experimental results demonstrate that the proposed model More >

  • Open Access

    ARTICLE

    Optimizing Performance Prediction of Perovskite Photovoltaic Materials by Statistical Methods-Intelligent Calculation Model

    Guo-Feng Fan1,2, Jia-Jing Qian1, Li-Ling Peng1, Xin-Hang Jia1, Ling-Han Zuo1, Jia-Can Yan1, Jiang-Yan Chen1, Anantkumar J. Umbarkar3, Wei-Chiang Hong4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3813-3837, 2025, DOI:10.32604/cmes.2025.073615 - 23 December 2025

    Abstract Accurate prediction of perovskite photovoltaic materials’ optoelectronic properties is crucial for developing efficient and stable materials, advancing solar technology. To address poor interpretability, high computational complexity, and inaccurate predictions in relevant machine learning models, this paper proposes a novel methodology. The technical route of this paper mainly centers on the random forest-knowledge distillation-bidirectional gated recurrent unit with attention technology (namely RF-KD-BIGRUA), which is applied in perovskite photovoltaic materials. Primarily, it combines random forest to quantitatively assess feature importance, selecting variables with significant impacts on photoelectric conversion efficiency. Subsequently, statistical techniques analyze the weight distribution of More >

  • Open Access

    ARTICLE

    BSDNet: Semantic Information Distillation-Based for Bilateral-Branch Real-Time Semantic Segmentation on Street Scene Image

    Huan Zeng, Jianxun Zhang*, Hongji Chen, Xinwei Zhu

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3879-3896, 2025, DOI:10.32604/cmc.2025.066803 - 23 September 2025

    Abstract Semantic segmentation in street scenes is a crucial technology for autonomous driving to analyze the surrounding environment. In street scenes, issues such as high image resolution caused by a large viewpoints and differences in object scales lead to a decline in real-time performance and difficulties in multi-scale feature extraction. To address this, we propose a bilateral-branch real-time semantic segmentation method based on semantic information distillation (BSDNet) for street scene images. The BSDNet consists of a Feature Conversion Convolutional Block (FCB), a Semantic Information Distillation Module (SIDM), and a Deep Aggregation Atrous Convolution Pyramid Pooling (DASP). More >

  • Open Access

    ARTICLE

    An Optimized Unsupervised Defect Detection Approach via Federated Learning and Adaptive Embeddings Knowledge Distillation

    Jinhai Wang1, Junwei Xue1, Hongyan Zhang2, Hui Xiao3,4, Huiling Wei3,4, Mingyou Chen3,4, Jiang Liao2, Lufeng Luo3,4,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1839-1861, 2025, DOI:10.32604/cmc.2025.064489 - 09 June 2025

    Abstract Defect detection based on computer vision is a critical component in ensuring the quality of industrial products. However, existing detection methods encounter several challenges in practical applications, including the scarcity of labeled samples, limited adaptability of pre-trained models, and the data heterogeneity in distributed environments. To address these issues, this research proposes an unsupervised defect detection method, FLAME (Federated Learning with Adaptive Multi-Model Embeddings). The method comprises three stages: (1) Feature learning stage: this work proposes FADE (Feature-Adaptive Domain-Specific Embeddings), a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator… More >

  • Open Access

    ARTICLE

    Traffic Flow Prediction in Data-Scarce Regions: A Transfer Learning Approach

    Haocheng Sun, Ping Li, Ying Li*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4899-4914, 2025, DOI:10.32604/cmc.2025.063029 - 19 May 2025

    Abstract Traffic flow prediction is a key component of intelligent transportation systems, particularly in data-scarce regions where traditional models relying on complete datasets often fail to provide accurate forecasts. These regions are characterized by limited sensor coverage and sparse data collection, pose significant challenges for existing prediction methods. To address this, we propose a novel transfer learning framework called transfer learning with deep knowledge distillation (TL-DKD), which combines graph neural network (GNN) with deep knowledge distillation to enable effective knowledge transfer from data-rich to data-scarce domains. Our contributions are three-fold: (1) We introduce, for the first… More >

  • Open Access

    ARTICLE

    Multimodal Neural Machine Translation Based on Knowledge Distillation and Anti-Noise Interaction

    Erlin Tian1, Zengchao Zhu2,*, Fangmei Liu2, Zuhe Li2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2305-2322, 2025, DOI:10.32604/cmc.2025.061145 - 16 April 2025

    Abstract Within the realm of multimodal neural machine translation (MNMT), addressing the challenge of seamlessly integrating textual data with corresponding image data to enhance translation accuracy has become a pressing issue. We saw that discrepancies between textual content and associated images can lead to visual noise, potentially diverting the model’s focus away from the textual data and so affecting the translation’s comprehensive effectiveness. To solve this visual noise problem, we propose an innovative KDNR-MNMT model. The model combines the knowledge distillation technique with an anti-noise interaction mechanism, which makes full use of the synthesized graphic knowledge… More >

  • Open Access

    ARTICLE

    An Improved Knowledge Distillation Algorithm and Its Application to Object Detection

    Min Yao1,*, Guofeng Liu2, Yaozu Zhang3, Guangjie Hu1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2189-2205, 2025, DOI:10.32604/cmc.2025.060609 - 16 April 2025

    Abstract Knowledge distillation (KD) is an emerging model compression technique for learning compact object detector models. Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers, which may limit the comprehensive learning of the student network. Additionally, the imbalance between the foreground and background also affects the performance of the model. To address these issues, this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part, and logit-based distillation to improve the detection performance of the category prediction part. Specifically, for the intermediate layer feature… More >

  • Open Access

    ARTICLE

    Pseudo Label Purification with Dual Contrastive Learning for Unsupervised Vehicle Re-Identification

    Jiyang Xu1, Qi Wang1,*, Xin Xiong2, Weidong Min1,3, Jiang Luo4, Di Gai1, Qing Han1,3

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3921-3941, 2025, DOI:10.32604/cmc.2024.058586 - 06 March 2025

    Abstract The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information. Due to the higher similarity in appearance between vehicles compared to pedestrians, pseudo-labels generated through clustering are ineffective in mitigating the impact of noise, and the feature distance between inter-class and intra-class has not been adequately improved. To address the aforementioned issues, we design a dual contrastive learning method based on knowledge distillation. During each iteration, we utilize a teacher model to randomly partition the entire dataset into two sub-domains based on clustering pseudo-label categories. By conducting contrastive… More >

  • Open Access

    ARTICLE

    KD-SegNet: Efficient Semantic Segmentation Network with Knowledge Distillation Based on Monocular Camera

    Thai-Viet Dang1,*, Nhu-Nghia Bui1, Phan Xuan Tan2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2001-2026, 2025, DOI:10.32604/cmc.2025.060605 - 17 February 2025

    Abstract Due to the necessity for lightweight and efficient network models, deploying semantic segmentation models on mobile robots (MRs) is a formidable task. The fundamental limitation of the problem lies in the training performance, the ability to effectively exploit the dataset, and the ability to adapt to complex environments when deploying the model. By utilizing the knowledge distillation techniques, the article strives to overcome the above challenges with the inheritance of the advantages of both the teacher model and the student model. More precisely, the ResNet152-PSP-Net model’s characteristics are utilized to train the ResNet18-PSP-Net model. Pyramid… More >

  • Open Access

    ARTICLE

    Unsupervised Low-Light Image Enhancement Based on Explicit Denoising and Knowledge Distillation

    Wenkai Zhang1,2, Hao Zhang1,2, Xianming Liu1, Xiaoyu Guo1,2, Xinzhe Wang1, Shuiwang Li1,2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2537-2554, 2025, DOI:10.32604/cmc.2024.059000 - 17 February 2025

    Abstract Under low-illumination conditions, the quality of image signals deteriorates significantly, typically characterized by a peak signal-to-noise ratio (PSNR) below 10 dB, which severely limits the usability of the images. Supervised methods, which utilize paired high-low light images as training sets, can enhance the PSNR to around 20 dB, significantly improving image quality. However, such data is challenging to obtain. In recent years, unsupervised low-light image enhancement (LIE) methods based on the Retinex framework have been proposed, but they generally lag behind supervised methods by 5–10 dB in performance. In this paper, we introduce the Denoising-Distilled… More >

Displaying 1-10 on page 1 of 20. Per Page