Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (113)
  • Open Access

    PROCEEDINGS

    Fluid-Structure Interaction Model for Analysis Underwater Explosion Structural Damage Based on BDIM

    Biao Wang1, Yuxiang Peng1,*, Wenhua Xu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012061

    Abstract The damage process of ship structures under near-field underwater explosions involves strong nonlinear coupling effects of multiple media, and its numerical simulation poses a serious challenge to traditional numerical algorithms. Based on previous research, this article first establishes a highly compressible multiphase flow numerical calculation model based on the high-precision Discontinuous Galerkin Method (DGM) and a ship elastic-plastic damage dynamic model based on the meshless Reproducing Kernel Particle Method (RKPM). Furthermore, we develop an algorithm for grid-independent dynamic expansion of cracks. Based on this, the Boundary Data Immersion Method (BDIM) is used to couple the More >

  • Open Access

    ARTICLE

    YOLO-RLC: An Advanced Target-Detection Algorithm for Surface Defects of Printed Circuit Boards Based on YOLOv5

    Yuanyuan Wang1,2,*, Jialong Huang1, Md Sharid Kayes Dipu1, Hu Zhao3, Shangbing Gao1,2, Haiyan Zhang1,2, Pinrong Lv1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4973-4995, 2024, DOI:10.32604/cmc.2024.055839 - 12 September 2024

    Abstract Printed circuit boards (PCBs) provide stable connections between electronic components. However, defective printed circuit boards may cause the entire equipment system to malfunction, resulting in incalculable losses. Therefore, it is crucial to detect defective printed circuit boards during the generation process. Traditional detection methods have low accuracy in detecting subtle defects in complex background environments. In order to improve the detection accuracy of surface defects on industrial printed circuit boards, this paper proposes a residual large kernel network based on YOLOv5 (You Only Look Once version 5) for PCBs surface defect detection, called YOLO-RLC (You… More >

  • Open Access

    ARTICLE

    A Hermitian C Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates

    Chih-Ping Wu*, Ruei-Syuan Chang

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 917-949, 2024, DOI:10.32604/cmes.2024.052307 - 20 August 2024

    Abstract This work develops a Hermitian C differential reproducing kernel interpolation meshless (DRKIM) method within the consistent couple stress theory (CCST) framework to study the three-dimensional (3D) microstructure-dependent static flexural behavior of a functionally graded (FG) microplate subjected to mechanical loads and placed under full simple supports. In the formulation, we select the transverse stress and displacement components and their first- and second-order derivatives as primary variables. Then, we set up the differential reproducing conditions (DRCs) to obtain the shape functions of the Hermitian C differential reproducing kernel (DRK) interpolant’s derivatives without using direct differentiation. The interpolant’s… More >

  • Open Access

    ARTICLE

    Joint Rain Streaks & Haze Removal Network for Object Detection

    Ragini Thatikonda1, Prakash Kodali1,*, Ramalingaswamy Cheruku2, Eswaramoorthy K.V3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4683-4702, 2024, DOI:10.32604/cmc.2024.051844 - 20 June 2024

    Abstract In the realm of low-level vision tasks, such as image deraining and dehazing, restoring images distorted by adverse weather conditions remains a significant challenge. The emergence of abundant computational resources has driven the dominance of deep Convolutional Neural Networks (CNNs), supplanting traditional methods reliant on prior knowledge. However, the evolution of CNN architectures has tended towards increasing complexity, utilizing intricate structures to enhance performance, often at the expense of computational efficiency. In response, we propose the Selective Kernel Dense Residual M-shaped Network (SKDRMNet), a flexible solution adept at balancing computational efficiency with network accuracy. A… More >

  • Open Access

    ARTICLE

    Exploring Motor Imagery EEG: Enhanced EEG Microstate Analysis with GMD-Driven Density Canopy Method

    Xin Xiong1, Jing Zhang1, Sanli Yi1, Chunwu Wang2, Ruixiang Liu3, Jianfeng He1,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4659-4681, 2024, DOI:10.32604/cmc.2024.050528 - 20 June 2024

    Abstract The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity. Traditional methods such as Atomic Agglomerative Hierarchical Clustering (AAHC), K-means clustering, Principal Component Analysis (PCA), and Independent Component Analysis (ICA) are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction. Tackling these limitations, this study introduces a Global Map Dissimilarity (GMD)-driven density canopy K-means clustering algorithm. This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for… More >

  • Open Access

    ARTICLE

    Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis

    Jing Gao*, Mingxuan Ji, Hongjiang Wang, Zhongxiao Du

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5017-5030, 2024, DOI:10.32604/cmc.2024.050158 - 20 June 2024

    Abstract With the continuous advancement of China’s “peak carbon dioxide emissions and Carbon Neutrality” process, the proportion of wind power is increasing. In the current research, aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data, a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine (IL-Bagging-DHKELM) error affinity propagation cluster analysis is proposed. The algorithm effectively combines deep hybrid kernel extreme learning machine (DHKELM) with incremental learning (IL). Firstly, an initial wind power prediction model is trained using the Bagging-DHKELM… More >

  • Open Access

    ARTICLE

    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

    Zhong Qu1,*, Guoqing Mu1, Bin Yuan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 255-273, 2024, DOI:10.32604/cmes.2024.048175 - 16 April 2024

    Abstract Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning, with convolutional neural networks (CNN) playing an important role in this field. However, as the performance of crack detection in cement pavement improves, the depth and width of the network structure are significantly increased, which necessitates more computing power and storage space. This limitation hampers the practical implementation of crack detection models on various platforms, particularly portable devices like small mobile devices. To solve these problems, we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature… More > Graphic Abstract

    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

  • Open Access

    ARTICLE

    Prediction of Bandwidth of Metamaterial Antenna Using Pearson Kernel-Based Techniques

    Sherly Alphonse1,*, S. Abinaya1, Sourabh Paul2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3449-3467, 2024, DOI:10.32604/cmc.2024.046403 - 26 March 2024

    Abstract The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas. The radiation cost and quality factor of the antenna are influenced by the size of the antenna. Metamaterial antennas allow for the circumvention of the bandwidth restriction for small antennas. Antenna parameters have recently been predicted using machine learning algorithms in existing literature. Machine learning can take the place of the manual process of experimenting to find the ideal simulated antenna parameters. The accuracy of the prediction will be primarily dependent on the model that is used. In… More >

  • Open Access

    ARTICLE

    CL2ES-KDBC: A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems

    Talal Albalawi, P. Ganeshkumar*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3511-3528, 2024, DOI:10.32604/cmc.2024.046396 - 26 March 2024

    Abstract The Internet of Things (IoT) is a growing technology that allows the sharing of data with other devices across wireless networks. Specifically, IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks. In this framework, a Covariance Linear Learning Embedding Selection (CL2ES) methodology is used at first to extract the features highly associated with the IoT intrusions. Then, the Kernel Distributed Bayes Classifier (KDBC) is created to forecast attacks based on the probability distribution More >

  • Open Access

    ARTICLE

    Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel

    Saima Rashid1,2,*, Fahd Jarad3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2289-2327, 2024, DOI:10.32604/cmes.2023.028773 - 11 March 2024

    Abstract Because of the features involved with their varied kernels, differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues. In this paper, we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels. In this approach, the overall population was separated into five cohorts. Furthermore, the descriptive behavior of the system was investigated, including prerequisites for the positivity of solutions, invariant domain of the solution, presence and stability of equilibrium points, and sensitivity analysis. We included a stochastic More >

Displaying 1-10 on page 1 of 113. Per Page