Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Photovoltaic Power Generation Power Prediction under Major Extreme Weather Based on VMD-KELM

    Yuxuan Zhao1,2,*, Bo Wang1, Shu Wang1, Wenjun Xu2, Gang Ma2

    Energy Engineering, Vol.121, No.12, pp. 3711-3733, 2024, DOI:10.32604/ee.2024.054032 - 22 November 2024

    Abstract The output of photovoltaic power stations is significantly affected by environmental factors, leading to intermittent and fluctuating power generation. With the increasing frequency of extreme weather events due to global warming, photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions. The integration of these stations on a large scale into the power grid could potentially pose challenges to system stability. To address this issue, in this study, we propose a network architecture based on VMD-KELM for predicting the power output of photovoltaic power plants during severe weather… More >

  • Open Access

    ARTICLE

    Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis

    Jing Gao*, Mingxuan Ji, Hongjiang Wang, Zhongxiao Du

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5017-5030, 2024, DOI:10.32604/cmc.2024.050158 - 20 June 2024

    Abstract With the continuous advancement of China’s “peak carbon dioxide emissions and Carbon Neutrality” process, the proportion of wind power is increasing. In the current research, aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data, a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine (IL-Bagging-DHKELM) error affinity propagation cluster analysis is proposed. The algorithm effectively combines deep hybrid kernel extreme learning machine (DHKELM) with incremental learning (IL). Firstly, an initial wind power prediction model is trained using the Bagging-DHKELM… More >

  • Open Access

    ARTICLE

    Colliding Bodies Optimization with Machine Learning Based Parkinson’s Disease Diagnosis

    Ashit Kumar Dutta1,*, Nazik M. A. Zakari2, Yasser Albagory3, Abdul Rahaman Wahab Sait4

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2195-2207, 2023, DOI:10.32604/csse.2023.026461 - 01 August 2022

    Abstract Parkinson’s disease (PD) is one of the primary vital degenerative diseases that affect the Central Nervous System among elderly patients. It affect their quality of life drastically and millions of seniors are diagnosed with PD every year worldwide. Several models have been presented earlier to detect the PD using various types of measurement data like speech, gait patterns, etc. Early identification of PD is important owing to the fact that the patient can offer important details which helps in slowing down the progress of PD. The recently-emerging Deep Learning (DL) models can leverage the past… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithsm with Machine Learning Based Epileptic Seizure Detection Model

    Manar Ahmed Hamza1,*, Noha Negm2, Shaha Al-Otaibi3, Amel A. Alhussan4, Mesfer Al Duhayyim5, Fuad Ali Mohammed Al-Yarimi2, Mohammed Rizwanullah1, Ishfaq Yaseen1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4541-4555, 2022, DOI:10.32604/cmc.2022.027048 - 21 April 2022

    Abstract Machine learning (ML) becomes a familiar topic among decision makers in several domains, particularly healthcare. Effective design of ML models assists to detect and classify the occurrence of diseases using healthcare data. Besides, the parameter tuning of the ML models is also essential to accomplish effective classification results. This article develops a novel red colobuses monkey optimization with kernel extreme learning machine (RCMO-KELM) technique for epileptic seizure detection and classification. The proposed RCMO-KELM technique initially extracts the chaotic, time, and frequency domain features in the actual EEG signals. In addition, the min-max normalization approach is More >

  • Open Access

    ARTICLE

    Sustainability Intelligent Evaluation of Regional Microgrid Interconnection System Based on Combination Entropy Weight Rank Order-TOPSIS and NILA-KELM

    Haichao Wang1, Yingying Fan2,3,*, Weigao Meng4, Qiaoran Yang5

    Energy Engineering, Vol.119, No.3, pp. 1075-1101, 2022, DOI:10.32604/ee.2022.019584 - 31 March 2022

    Abstract Sustainability evaluation of regional microgrid interconnection system is conducive to a profound and comprehensive understanding of the impact of interconnection system projects. In order to realize the comprehensive and scientific intelligent evaluation of the system, this paper proposes an evaluation model based on combination entropy weight rank order-technique for order preference by similarity to an ideal solution (TOPSIS) and Niche Immune Lion Algorithm-Extreme Learning Machine with Kernel (NILA-KELM). Firstly, the sustainability evaluation indicator system of the regional microgrid interconnection system is constructed from four aspects of economic, environmental, social, and technical characteristics, and the evaluation… More >

  • Open Access

    ARTICLE

    Brainwave Classification for Character-Writing Application Using EMD-Based GMM and KELM Approaches

    Khomdet Phapatanaburi1, Kasidit kokkhunthod2, Longbiao Wang3, Talit Jumphoo2, Monthippa Uthansakul2, Anyaporn Boonmahitthisud4, Peerapong Uthansakul2,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3029-3044, 2021, DOI:10.32604/cmc.2021.014433 - 28 December 2020

    Abstract A brainwave classification, which does not involve any limb movement and stimulus for character-writing applications, benefits impaired people, in terms of practical communication, because it allows users to command a device/computer directly via electroencephalogram signals. In this paper, we propose a new framework based on Empirical Mode Decomposition (EMD) features along with the Gaussian Mixture Model (GMM) and Kernel Extreme Learning Machine (KELM)-based classifiers. For this purpose, firstly, we introduce EMD to decompose EEG signals into Intrinsic Mode Functions (IMFs), which actually are used as the input features of the brainwave classification for the character-writing… More >

Displaying 1-10 on page 1 of 6. Per Page