Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Power Quality Disturbance Identification Basing on Adaptive Kalman Filter and Multi-Scale Channel Attention Fusion Convolutional Network

    Feng Zhao, Guangdi Liu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.7, pp. 1865-1882, 2024, DOI:10.32604/ee.2024.048209 - 11 June 2024

    Abstract In light of the prevailing issue that the existing convolutional neural network (CNN) power quality disturbance identification method can only extract single-scale features, which leads to a lack of feature information and weak anti-noise performance, a new approach for identifying power quality disturbances based on an adaptive Kalman filter (KF) and multi-scale channel attention (MS-CAM) fused convolutional neural network is suggested. Single and composite-disruption signals are generated through simulation. The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal, and subsequent integration of multi-scale features into the conventional CNN… More >

  • Open Access

    ARTICLE

    Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles

    Othman S. Al-Heety1,*, Zahriladha Zakaria1,*, Ahmed Abu-Khadrah2, Mahamod Ismail3, Sarmad Nozad Mahmood4, Mohammed Mudhafar Shakir5, Sameer Alani6, Hussein Alsariera1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2103-2127, 2024, DOI:10.32604/cmes.2023.029509 - 15 December 2023

    Abstract Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision. In this article, these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data. The framework integrates Kalman filtering and Q-learning. Unlike smoothing Kalman filtering, our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error. Unlike traditional Q-learning, our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from… More >

  • Open Access

    ARTICLE

    Robust Remaining Useful Life Estimation Based on an Improved Unscented Kalman Filtering Method

    Shenkun Zhao, Chao Jiang*, Zhe Zhang, Xiangyun Long

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1151-1173, 2020, DOI:10.32604/cmes.2020.08867 - 28 May 2020

    Abstract In the Prognostics and Health Management (PHM), remaining useful life (RUL) is very important and utilized to ensure the reliability and safety of the operation of complex mechanical systems. Recently, unscented Kalman filtering (UKF) has been applied widely in the RUL estimation. For a degradation system, the relationship between its monitored measurements and its degradation states is assumed to be nonlinear in the conventional UKF. However, in some special degradation systems, their monitored measurements have a linear relation with their degradation states. For these special problems, it may bring estimation errors to use the UKF… More >

  • Open Access

    ARTICLE

    Improved GNSS Cooperation Positioning Algorithm for Indoor Localization

    Taoyun Zhou1,2, Baowang Lian1, Siqing Yang2,*, Yi Zhang1, Yangyang Liu1,3

    CMC-Computers, Materials & Continua, Vol.56, No.2, pp. 225-245, 2018, DOI:10.3970/cmc.2018.02671

    Abstract For situations such as indoor and underground parking lots in which satellite signals are obstructed, GNSS cooperative positioning can be used to achieve high-precision positioning with the assistance of cooperative nodes. Here we study the cooperative positioning of two static nodes, node 1 is placed on the roof of the building and the satellite observation is ideal, node 2 is placed on the indoor windowsill where the occlusion situation is more serious, we mainly study how to locate node 2 with the assistance of node 1. Firstly, the two cooperative nodes are located with pseudo-range… More >

  • Open Access

    ARTICLE

    Tracking Features in Image Sequences with Kalman Filtering, Global Optimization, Mahalanobis Distance and a Management Model

    Raquel R. Pinho1, João Manuel R. S. Tavares1

    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.1, pp. 51-76, 2009, DOI:10.3970/cmes.2009.046.051

    Abstract This work addresses the problem of tracking feature points along image sequences. In order to analyze the undergoing movement, an approach based on the Kalman filtering technique has been used, which basically carries out the estimation and correction of the features' movement in every image frame. So as to integrate the measurements obtained from each image into the Kalman filter, a data optimization process has been adopted to achieve the best global correspondence set. The proposed criterion minimizes the cost of global matching, which is based on the Mahalanobis distance. A management model is employed More >

Displaying 1-10 on page 1 of 5. Per Page