Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Contrastive Clustering for Unsupervised Recognition of Interference Signals

    Xiangwei Chen1, Zhijin Zhao1,2,*, Xueyi Ye1, Shilian Zheng2, Caiyi Lou2, Xiaoniu Yang2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1385-1400, 2023, DOI:10.32604/csse.2023.034543

    Abstract Interference signals recognition plays an important role in anti-jamming communication. With the development of deep learning, many supervised interference signals recognition algorithms based on deep learning have emerged recently and show better performance than traditional recognition algorithms. However, there is no unsupervised interference signals recognition algorithm at present. In this paper, an unsupervised interference signals recognition method called double phases and double dimensions contrastive clustering (DDCC) is proposed. Specifically, in the first phase, four data augmentation strategies for interference signals are used in data-augmentation-based (DA-based) contrastive learning. In the second phase, the original dataset’s k-nearest neighbor set (KNNset) is designed… More >

  • Open Access

    ARTICLE

    Large Scale Fish Images Classification and Localization using Transfer Learning and Localization Aware CNN Architecture

    Usman Ahmad1, Muhammad Junaid Ali2, Faizan Ahmed Khan3, Arfat Ahmad Khan4, Arif Ur Rehman1, Malik Muhammad Ali Shahid5, Mohd Anul Haq6,*, Ilyas Khan7, Zamil S. Alzamil6, Ahmed Alhussen8

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2125-2140, 2023, DOI:10.32604/csse.2023.031008

    Abstract Building an automatic fish recognition and detection system for large-scale fish classes is helpful for marine researchers and marine scientists because there are large numbers of fish species. However, it is quite difficult to build such systems owing to the lack of data imbalance problems and large number of classes. To solve these issues, we propose a transfer learning-based technique in which we use Efficient-Net, which is pre-trained on ImageNet dataset and fine-tuned on QuT Fish Database, which is a large scale dataset. Furthermore, prior to the activation layer, we use Global Average Pooling (GAP) instead of dense layer with… More >

  • Open Access

    ARTICLE

    Fault Diagnosis in Robot Manipulators Using SVM and KNN

    D. Maincer1,*, Y. Benmahamed2, M. Mansour1, Mosleh Alharthi3, Sherif S. M. Ghonein3

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1957-1969, 2023, DOI:10.32604/iasc.2023.029210

    Abstract In this paper, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) based methods are to be applied on fault diagnosis in a robot manipulator. A comparative study between the two classifiers in terms of successfully detecting and isolating the seven classes of sensor faults is considered in this work. For both classifiers, the torque, the position and the speed of the manipulator have been employed as the input vector. However, it is to mention that a large database is needed and used for the training and testing phases. The SVM method used in this paper is based on the Gaussian… More >

  • Open Access

    ARTICLE

    Perspicacious Apprehension of HDTbNB Algorithm Opposed to Security Contravention

    Shyla1,*, Vishal Bhatnagar2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2431-2447, 2023, DOI:10.32604/iasc.2023.029126

    Abstract The exponential pace of the spread of the digital world has served as one of the assisting forces to generate an enormous amount of information flowing over the network. The data will always remain under the threat of technological suffering where intruders and hackers consistently try to breach the security systems by gaining personal information insights. In this paper, the authors proposed the HDTbNB (Hybrid Decision Tree-based Naïve Bayes) algorithm to find the essential features without data scaling to maximize the model’s performance by reducing the false alarm rate and training period to reduce zero frequency with enhanced accuracy of… More >

  • Open Access

    ARTICLE

    Predict the Chances of Heart Abnormality in Diabetic Patients Through Machine Learning

    Monika Saraswat*, A. K. Wadhwani, Sulochana Wadhwani

    Journal on Artificial Intelligence, Vol.4, No.2, pp. 61-76, 2022, DOI:10.32604/jai.2022.028140

    Abstract Today, more families are affected by Diabetes Mellitus (DM) disease on account of its continually increasing occurrence. Most patients remain unknown about their health quality or the DM’s risk factors prior to diagnosis. The medical world has witnessed that individuals are affected by two different diabetes namely a) Type-1 diabetes (T1D), as well as b) Type-2 diabetes (T2D). As Type 2 Diabetes affects the other organs of the body, the proposed system concentrates specifically on Type 2 Diabetes. This work aims to ascertain the cardiac disorder in T2D patients. As of the ECG dataset, the requisite data is gathered it… More >

  • Open Access

    ARTICLE

    Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk

    Polin Rahman1, Ahmed Rifat1, MD. IftehadAmjad Chy1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Sultan Aljahdali2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 757-775, 2023, DOI:10.32604/csse.2023.021469

    Abstract Heart failure is now widely spread throughout the world. Heart disease affects approximately 48% of the population. It is too expensive and also difficult to cure the disease. This research paper represents machine learning models to predict heart failure. The fundamental concept is to compare the correctness of various Machine Learning (ML) algorithms and boost algorithms to improve models’ accuracy for prediction. Some supervised algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), Logistic Regression (LR) are considered to achieve the best results. Some boosting algorithms like Extreme Gradient Boosting (XGBoost) and CatBoost are… More >

  • Open Access

    ARTICLE

    Tea Plantation Frost Damage Early Warning Using a Two-Fold Method for Temperature Prediction

    Zhengyu Wu1, Kaiqiang Li1, Lin Yuan2, Jingcheng Zhang1, Xianfeng Zhou1,*, Dongmei Chen1,*, Kaihua Wei1

    Phyton-International Journal of Experimental Botany, Vol.91, No.10, pp. 2269-2282, 2022, DOI:10.32604/phyton.2022.022607

    Abstract As the source and main producing area of tea in the world, China has formed unique tea culture, and achieved remarkable economic benefits. However, frequent meteorological disasters, particularly low temperature frost damage in late spring has seriously threatened the growth status of tea trees and caused quality and yield reduction of tea industry. Thus, timely and accurate early warning of frost damage occurrence in specific tea garden is very important for tea plantation management and economic values. Aiming at the problems existing in current meteorological disaster forecasting methods, such as difficulty in obtaining massive meteorological data, large amount of calculation… More >

  • Open Access

    ARTICLE

    Handling High Dimensionality in Ensemble Learning for Arrhythmia Prediction

    Fuad Ali Mohammed Al-Yarimi*

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1729-1742, 2022, DOI:10.32604/iasc.2022.022418

    Abstract Computer-aided arrhythmia prediction from ECG (electrocardiograms) is essential in clinical practices, which promises to reduce the mortality caused by inexperienced clinical practitioners. Moreover, computer-aided methods often succeed in the early detection of arrhythmia scope from electrocardiogram reports. Machine learning is the buzz of computer-aided clinical practices. Particularly, computer-aided arrhythmia prediction methods highly adopted machine learning methods. However, the high dimensionality in feature values considered for the machine learning models’ training phase often causes false alarming. This manuscript addressed the high dimensionality in the learning phase and proposed an (Ensemble Learning method for Arrhythmia Prediction) ELAP (ensemble learning-based arrhythmia prediction). The… More >

  • Open Access

    ARTICLE

    Fusion-Based Supply Chain Collaboration Using Machine Learning Techniques

    Naeem Ali1, Taher M. Ghazal2,3, Alia Ahmed1, Sagheer Abbas4, M. A. Khan5, Haitham M. Alzoubi6, Umar Farooq7, Munir Ahmad4, Muhammad Adnan Khan8,*

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1671-1687, 2022, DOI:10.32604/iasc.2022.019892

    Abstract Supply Chain Collaboration is the network of various entities that work cohesively to make up the entire process. The supply chain organizations’ success is dependent on integration, teamwork, and the communication of information. Every day, supply chain and business players work in a dynamic setting. They must balance competing goals such as process robustness, risk reduction, vulnerability reduction, real financial risks, and resilience against just-in-time and cost-efficiency. Decision-making based on shared information in Supply Chain Collaboration constitutes the recital and competitiveness of the collective process. Supply Chain Collaboration has prompted companies to implement the perfect data analytics functions (e.g., data… More >

  • Open Access

    ARTICLE

    Position Vectors Based Efficient Indoor Positioning System

    Ayesha Javed1, Mir Yasir Umair1,*, Alina Mirza1, Abdul Wakeel1, Fazli Subhan2, Wazir Zada Khan3

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1781-1799, 2021, DOI:10.32604/cmc.2021.015229

    Abstract With the advent and advancements in the wireless technologies, Wi-Fi fingerprinting-based Indoor Positioning System (IPS) has become one of the most promising solutions for localization in indoor environments. Unlike the outdoor environment, the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efficient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things (IoTs) and green computing. In this paper, we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors. Initially, in the database development phase, Motley Kennan propagation… More >

Displaying 1-10 on page 1 of 16. Per Page  

Share Link