Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    The Impact of Semi-Supervised Learning on the Performance of Intelligent Chatbot System

    Sudan Prasad Uprety, Seung Ryul Jeong*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3937-3952, 2022, DOI:10.32604/cmc.2022.023127 - 07 December 2021

    Abstract Artificial intelligent based dialog systems are getting attention from both business and academic communities. The key parts for such intelligent chatbot systems are domain classification, intent detection, and named entity recognition. Various supervised, unsupervised, and hybrid approaches are used to detect each field. Such intelligent systems, also called natural language understanding systems analyze user requests in sequential order: domain classification, intent, and entity recognition based on the semantic rules of the classified domain. This sequential approach propagates the downstream error; i.e., if the domain classification model fails to classify the domain, intent and entity recognition… More >

  • Open Access

    ARTICLE

    Adversarial Training for Multi Domain Dialog System

    Sudan Prasad Uprety, Seung Ryul Jeong*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 1-11, 2022, DOI:10.32604/iasc.2022.018757 - 03 September 2021

    Abstract Natural Language Understanding and Speech Understanding systems are now a global trend, and with the advancement of artificial intelligence and machine learning techniques, have drawn attention from both the academic and business communities. Domain prediction, intent detection and entity extraction or slot fillings are the most important parts for such intelligent systems. Various traditional machine learning algorithms such as Bayesian algorithm, Support Vector Machine, and Artificial Neural Network, along with recent Deep Neural Network techniques, are used to predict domain, intent, and entity. Most language understanding systems process user input in a sequential order: domain… More >

  • Open Access

    ARTICLE

    Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System

    Thavavel Vaiyapuri*, Adel Binbusayyis

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3271-3288, 2021, DOI:10.32604/cmc.2021.017665 - 06 May 2021

    Abstract In the era of Big data, learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system (IDS). Owing to the lack of accurately labeled network traffic data, many unsupervised feature representation learning models have been proposed with state-of-the-art performance. Yet, these models fail to consider the classification error while learning the feature representation. Intuitively, the learnt feature representation may degrade the performance of the classification task. For the first time in the field of intrusion detection, this paper proposes an… More >

  • Open Access

    ARTICLE

    ACLSTM: A Novel Method for CQA Answer Quality Prediction Based on Question-Answer Joint Learning

    Weifeng Ma*, Jiao Lou, Caoting Ji, Laibin Ma

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 179-193, 2021, DOI:10.32604/cmc.2020.011969 - 30 October 2020

    Abstract Given the limitations of the community question answering (CQA) answer quality prediction method in measuring the semantic information of the answer text, this paper proposes an answer quality prediction model based on the question-answer joint learning (ACLSTM). The attention mechanism is used to obtain the dependency relationship between the Question-and-Answer (Q&A) pairs. Convolutional Neural Network (CNN) and Long Short-term Memory Network (LSTM) are used to extract semantic features of Q&A pairs and calculate their matching degree. Besides, answer semantic representation is combined with other effective extended features as the input representation of the fully connected More >

Displaying 1-10 on page 1 of 4. Per Page