Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ABSTRACT

    Multi-physics CFD Simulation in a Jet Engine

    Makoto Yamamoto1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 19-19, 2021, DOI:10.32604/icces.2021.08478

    Abstract In a turbine of a jet engine, deposition phenomenon is often observed. Deposition is a phenomenon that particles such as volcanic ash, sand and dust passing through a combustion chamber of a jet engine are melt, rapidly cooled and then accumulate on the turbine blade and end-wall surfaces. Deposition is one of critical problems when aircraft flies in a cloud with many particles. Obviously, deposition can degrade the aerodynamic performance of the turbine blade and vane, and make partial or complete blockage of film-cooling holes. As the result, deposition deteriorates safety and life time of… More >

  • Open Access

    ABSTRACT

    Numerical Simulation of Particulate Erosion in a Single-Stage Turbine for Jet Engines

    Masaya Suzuki1,*, Manabu Ueno2, Koji Fukudome2, Yoji Okita1, Makoto Yamamoto2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 14-14, 2021, DOI:10.32604/icces.2021.08337

    Abstract Recently, ceramic matrix composites (CMCs) are expected to utilize for the components of gas turbine engines due to its low density, high strength, and high rigidity in the high-temperature condition. The environmental barrier coating (EBC) is a key technology for the practical application of CMC to prevent surface regression from particulate and water vapor environments. However, the anti-erosion characteristics of CMC and EBC have not been clarified. In the present study, the authors performed numerical simulations of particulate erosion phenomena in a high-pressure turbine first stage to investigate the differences in the damage pattern and More >

  • Open Access

    ARTICLE

    Design Optimization of the Intake of a Small-Scale Turbojet Engine

    R. Amirante1, L.A. Catalano2, A. Dadone1, V.S.E. Daloiso1

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 17-30, 2007, DOI:10.3970/cmes.2007.018.017

    Abstract This paper proposes a gradient-based progressive optimization technique, which can be efficiently combined with black-box simulation codes. Its efficiency relies on the simultaneous convergence of the flow solution, of the gradient evaluation, and of the design update, as well as on the use of progressively finer grids. The developed numerical technique has general validity and is here applied to the fluid-dynamic design optimization of the intake of a small-size turbojet engine, at high load and zero flight speed. Two simplified design criteria are proposed, which avoid simulating the flow in any turbojet components other than… More >

Displaying 1-10 on page 1 of 3. Per Page