Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems

    Farouq Zitouni1,*, Saad Harous2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Guojiang Xiong6, Fatima Zohra Khechiba1, Khadidja Kherchouche1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 219-265, 2024, DOI:10.32604/cmes.2024.052001 - 20 August 2024

    Abstract Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems. This approach aims to leverage the strengths of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be referred to as BHJO. Through this fusion, the BHJO algorithm aims to… More >

  • Open Access

    ARTICLE

    Jellyfish Search Optimization with Deep Learning Driven Autism Spectrum Disorder Classification

    S. Rama Sree1, Inderjeet Kaur2, Alexey Tikhonov3, E. Laxmi Lydia4, Ahmed A. Thabit5, Zahraa H. Kareem6, Yousif Kerrar Yousif7, Ahmed Alkhayyat8,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2195-2209, 2023, DOI:10.32604/cmc.2023.032586 - 22 September 2022

    Abstract Autism spectrum disorder (ASD) is regarded as a neurological disorder well-defined by a specific set of problems associated with social skills, recurrent conduct, and communication. Identifying ASD as soon as possible is favourable due to prior identification of ASD permits prompt interferences in children with ASD. Recognition of ASD related to objective pathogenic mutation screening is the initial step against prior intervention and efficient treatment of children who were affected. Nowadays, healthcare and machine learning (ML) industries are combined for determining the existence of various diseases. This article devises a Jellyfish Search Optimization with Deep… More >

  • Open Access

    ARTICLE

    An Optimized Deep-Learning-Based Low Power Approximate Multiplier Design

    M. Usharani1,*, B. Sakthivel2, S. Gayathri Priya3, T. Nagalakshmi4, J. Shirisha5

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1647-1657, 2023, DOI:10.32604/csse.2023.027744 - 15 June 2022

    Abstract Approximate computing is a popular field for low power consumption that is used in several applications like image processing, video processing, multimedia and data mining. This Approximate computing is majorly performed with an arithmetic circuit particular with a multiplier. The multiplier is the most essential element used for approximate computing where the power consumption is majorly based on its performance. There are several researchers are worked on the approximate multiplier for power reduction for a few decades, but the design of low power approximate multiplier is not so easy. This seems a bigger challenge for… More >

  • Open Access

    ARTICLE

    An Improved Jellyfish Algorithm for Multilevel Thresholding of Magnetic Resonance Brain Image Segmentations

    Mohamed Abdel-Basset1, Reda Mohamed1, Mohamed Abouhawwash2,3, Ripon K. Chakrabortty4, Michael J. Ryan4, Yunyoung Nam5,*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 2961-2977, 2021, DOI:10.32604/cmc.2021.016956 - 06 May 2021

    Abstract Image segmentation is vital when analyzing medical images, especially magnetic resonance (MR) images of the brain. Recently, several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation; however, the algorithms become trapped in local minima and have low convergence speeds, particularly as the number of threshold levels increases. Consequently, in this paper, we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm (JSA) (an optimizer). We modify the JSA to prevent descents into local minima, and we accelerate convergence toward optimal solutions. The improvement is… More >

Displaying 1-10 on page 1 of 4. Per Page