Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    The Nitsche’s Method and Applications in Isogeometric Analysis

    Qingyuan Hu1,*, Yuan Liang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09441

    Abstract The Nitsche’s method is originally proposed as a technique to impose boundary conditions, nowadays it is widely used for isometric analysis (IGA) and corresponding topology optimization applications. Based on our previous research [1], we present a simple way to derive the Nitsche’s formulations for different kind of boundary and interface conditions, and studied this technique in the context of IGA discretization, especially for patch coupling and contact problems. The skew-symmetric variant of the Nitsche’s method is then further studied. For linear boundary or interface conditions, the skew-symmetric formulation is parameterfree. For contact conditions, it remains… More >

  • Open Access

    PROCEEDINGS

    Acoustic Topology Optimization of Sound Absorbing Materials Directly from Subdivision Surfaces with IGA-FEM/BEM

    Yanming Xu1,2, Leilei Chen1,2,*, Haojie Lian3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010581

    Abstract An isogeometric coupling algorithm based on the finite element method and the boundary element method (IGA-FEM/BEM) is proposed for the simulation of acoustic fluid-structure interaction and structuralacoustic topology optimization using the direct differentiation method. The geometries are constructed from triangular control meshes through Loop subdivision scheme. The effect of sound-absorbing materials on the acoustic response is characterized by acoustic impedance boundary conditions. The optimization problem is formulated in the framework of Solid Isotropic Material with Penalization methods and the sound absorption coefficients on elements are selected as design variables. Numerical examples are presented to demonstrate More >

Displaying 1-10 on page 1 of 2. Per Page