Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump

    He Wang1,*, Ying He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 889-899, 2024, DOI:10.32604/fdmp.2023.042728 - 28 March 2024

    Abstract Magnetohydrodynamic (MHD) induction pumps are contactless pumps able to withstand harsh environments. The rate of fluid flow through the pump directly affects the efficiency and stability of the device. To explore the influence of induction pump settings on the related delivery speed, in this study, a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump. The effects of current intensity, frequency, coil turns and coil winding size on the velocity of the working fluid are analyzed. It is shown that the More >

  • Open Access

    ARTICLE

    Fluid and Osmotic Pressure Balance and Volume Stabilization in Cells

    Peter M. Pinsky*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1329-1350, 2021, DOI:10.32604/cmes.2021.017740 - 25 November 2021

    Abstract A fundamental problem for cells with their fragile membranes is the control of their volume. The primordial solution to this problem is the active transport of ions across the cell membrane to modulate the intracellular osmotic pressure. In this work, a theoretical model of the cellular pump-leak mechanism is proposed within the general framework of linear nonequilibrium thermodynamics. The model is expressed with phenomenological equations that describe passive and active ionic transport across cell membranes, supplemented by an equation for the membrane potential that accounts for the electrogenicity of the ionic pumps. For active ionic More >

Displaying 1-10 on page 1 of 2. Per Page