Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network (DAMLAN)

    Fatma S. Alrayes1, Syed Umar Amin2,*, Nada Ali Hakami2, Mohammed K. Alzaylaee3, Tariq Kashmeery4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 581-614, 2025, DOI:10.32604/cmes.2025.065188 - 31 July 2025

    Abstract The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems (IDS) for enhanced network security. While conventional IDSs can be unsuitable for detecting different and emerging attacks, there is a demand for better techniques to improve detection reliability. This study introduces a new method, the Deep Adaptive Multi-Layer Attention Network (DAMLAN), to boost the result of intrusion detection on network data. Due to its multi-scale attention mechanisms and graph features, DAMLAN aims to address both known and unknown intrusions. The real-world NSL-KDD dataset, a popular choice among IDS researchers, is used to… More >

  • Open Access

    ARTICLE

    Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation

    Xiaogang Yuan*, Huan Pei, Yanlin Wu

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5555-5575, 2025, DOI:10.32604/cmc.2025.063537 - 30 July 2025

    Abstract In the complex environment of Wireless Sensor Networks (WSNs), various malicious attacks have emerged, among which internal attacks pose particularly severe security risks. These attacks seriously threaten network stability, data transmission reliability, and overall performance. To effectively address this issue and significantly improve intrusion detection speed, accuracy, and resistance to malicious attacks, this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation (TIDM-DTE). This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust, communication trust, and energy consumption trust by focusing… More >

  • Open Access

    ARTICLE

    Diff-IDS: A Network Intrusion Detection Model Based on Diffusion Model for Imbalanced Data Samples

    Yue Yang1,2, Xiangyan Tang2,3,*, Zhaowu Liu2,3,*, Jieren Cheng2,3, Haozhe Fang3, Cunyi Zhang3

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4389-4408, 2025, DOI:10.32604/cmc.2025.060357 - 06 March 2025

    Abstract With the rapid development of Internet of Things technology, the sharp increase in network devices and their inherent security vulnerabilities present a stark contrast, bringing unprecedented challenges to the field of network security, especially in identifying malicious attacks. However, due to the uneven distribution of network traffic data, particularly the imbalance between attack traffic and normal traffic, as well as the imbalance between minority class attacks and majority class attacks, traditional machine learning detection algorithms have significant limitations when dealing with sparse network traffic data. To effectively tackle this challenge, we have designed a lightweight… More >

  • Open Access

    ARTICLE

    Anomaly-Based Intrusion Detection Model Using Deep Learning for IoT Networks

    Muaadh A. Alsoufi1,*, Maheyzah Md Siraj1, Fuad A. Ghaleb2, Muna Al-Razgan3, Mahfoudh Saeed Al-Asaly3, Taha Alfakih3, Faisal Saeed2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 823-845, 2024, DOI:10.32604/cmes.2024.052112 - 20 August 2024

    Abstract The rapid growth of Internet of Things (IoT) devices has brought numerous benefits to the interconnected world. However, the ubiquitous nature of IoT networks exposes them to various security threats, including anomaly intrusion attacks. In addition, IoT devices generate a high volume of unstructured data. Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks, such as resource constraints and heterogeneous data sources. Given the unpredictable nature of network technologies and diverse intrusion methods, conventional machine-learning approaches seem to lack efficiency. Across numerous research domains, deep learning techniques have demonstrated… More >

  • Open Access

    ARTICLE

    Fusion of Spiral Convolution-LSTM for Intrusion Detection Modeling

    Fei Wang, Zhen Dong*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2315-2329, 2024, DOI:10.32604/cmc.2024.048443 - 15 May 2024

    Abstract Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models, SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model. The dataset is first preprocessed using solo thermal encoding and normalization functions. Then the spiral convolution-Long Short-Term Memory Network model is constructed, which consists of spiral convolution, a two-layer long short-term memory network, and a classifier. It is shown through experiments that the model is characterized by high accuracy, small model computation, and fast convergence speed relative to previous deep learning models. The model More >

  • Open Access

    ARTICLE

    ResNeSt-biGRU: An Intrusion Detection Model Based on Internet of Things

    Yan Xiang1,2, Daofeng Li1,2,*, Xinyi Meng1,2, Chengfeng Dong1,2, Guanglin Qin1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1005-1023, 2024, DOI:10.32604/cmc.2024.047143 - 25 April 2024

    Abstract The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasing demands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has caught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. This has resulted in a myriad of security challenges, including information leakage, malware propagation, and financial loss, among others. Consequently, developing an intrusion detection system to identify both active and potential intrusion traffic in IoT networks is of paramount importance. In this paper, we propose… More >

  • Open Access

    ARTICLE

    Intrusion Detection Model Using Chaotic MAP for Network Coding Enabled Mobile Small Cells

    Chanumolu Kiran Kumar, Nandhakumar Ramachandran*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3151-3176, 2024, DOI:10.32604/cmc.2023.043534 - 26 March 2024

    Abstract Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions, vulnerabilities, and assaults. Complex security systems, such as Intrusion Detection Systems (IDS), are essential due to the limitations of simpler security measures, such as cryptography and firewalls. Due to their compact nature and low energy reserves, wireless networks present a significant challenge for security procedures. The features of small cells can cause threats to the network. Network Coding (NC) enabled small cells are vulnerable to various types of attacks. Avoiding attacks and performing secure “peer” to “peer” data transmission is… More >

  • Open Access

    ARTICLE

    A Novel Eccentric Intrusion Detection Model Based on Recurrent Neural Networks with Leveraging LSTM

    Navaneetha Krishnan Muthunambu1, Senthil Prabakaran2, Balasubramanian Prabhu Kavin3, Kishore Senthil Siruvangur4, Kavitha Chinnadurai1, Jehad Ali5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3089-3127, 2024, DOI:10.32604/cmc.2023.043172 - 26 March 2024

    Abstract The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet. Regrettably, this development has expanded the potential targets that hackers might exploit. Without adequate safeguards, data transmitted on the internet is significantly more susceptible to unauthorized access, theft, or alteration. The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks. This research paper introduces a novel intrusion detection framework that utilizes Recurrent… More >

  • Open Access

    ARTICLE

    A Novel Intrusion Detection Model of Unknown Attacks Using Convolutional Neural Networks

    Abdullah Alsaleh1,2,*

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 431-449, 2024, DOI:10.32604/csse.2023.043107 - 19 March 2024

    Abstract With the increasing number of connected devices in the Internet of Things (IoT) era, the number of intrusions is also increasing. An intrusion detection system (IDS) is a secondary intelligent system for monitoring, detecting and alerting against malicious activity. IDS is important in developing advanced security models. This study reviews the importance of various techniques, tools, and methods used in IoT detection and/or prevention systems. Specifically, it focuses on machine learning (ML) and deep learning (DL) techniques for IDS. This paper proposes an accurate intrusion detection model to detect traditional and new attacks on the… More >

  • Open Access

    ARTICLE

    Network Intrusion Detection Model Using Fused Machine Learning Technique

    Fahad Mazaed Alotaibi*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2479-2490, 2023, DOI:10.32604/cmc.2023.033792 - 31 March 2023

    Abstract With the progress of advanced technology in the industrial revolution encompassing the Internet of Things (IoT) and cloud computing, cyberattacks have been increasing rapidly on a large scale. The rapid expansion of IoT and networks in many forms generates massive volumes of data, which are vulnerable to security risks. As a result, cyberattacks have become a prevalent and danger to society, including its infrastructures, economy, and citizens’ privacy, and pose a national security risk worldwide. Therefore, cyber security has become an increasingly important issue across all levels and sectors. Continuous progress is being made in More >

Displaying 1-10 on page 1 of 18. Per Page