CMES: The Application Channel for the 2022 Young Researcher Award is now Open
Empowering Human Decision-Making in AI Models: The Path to Trust and Transparency
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3709-3724, 2023, DOI:10.32604/iasc.2023.036856
Abstract The increasing number of security holes in the Internet of Things (IoT) networks creates a question about the reliability of existing network intrusion detection systems. This problem has led to the developing of a research area focused on improving network-based intrusion detection system (NIDS) technologies. According to the analysis of different businesses, most researchers focus on improving the classification results of NIDS datasets by combining machine learning and feature reduction techniques. However, these techniques are not suitable for every type of network. In light of this, whether the optimal algorithm and feature reduction techniques can be generalized across various datasets… More >
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2757-2771, 2023, DOI:10.32604/iasc.2023.032835
Abstract The static nature of cyber defense systems gives attackers a sufficient amount of time to explore and further exploit the vulnerabilities of information technology systems. In this paper, we investigate a problem where multiagent systems sensing and acting in an environment contribute to adaptive cyber defense. We present a learning strategy that enables multiple agents to learn optimal policies using multiagent reinforcement learning (MARL). Our proposed approach is inspired by the multiarmed bandits (MAB) learning technique for multiple agents to cooperate in decision making or to work independently. We study a MAB approach in which defenders visit a system multiple… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 2509-2525, 2023, DOI:10.32604/csse.2023.036119
Abstract With the growth of the discipline of digital communication, the topic has acquired more attention in the cybersecurity medium. The Intrusion Detection (ID) system monitors network traffic to detect malicious activities. The paper introduces a novel Feature Selection (FS) approach for ID. Reptile Search Algorithm (RSA)—is a new optimization algorithm; in this method, each agent searches a new region according to the position of the host, which makes the algorithm suffers from getting stuck in local optima and a slow convergence rate. To overcome these problems, this study introduces an improved RSA approach by integrating Cauchy Mutation (CM) into the… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 1415-1429, 2023, DOI:10.32604/csse.2023.034321
Abstract Lately, the Internet of Things (IoT) application requires millions of structured and unstructured data since it has numerous problems, such as data organization, production, and capturing. To address these shortcomings, big data analytics is the most superior technology that has to be adapted. Even though big data and IoT could make human life more convenient, those benefits come at the expense of security. To manage these kinds of threats, the intrusion detection system has been extensively applied to identify malicious network traffic, particularly once the preventive technique fails at the level of endpoint IoT devices. As cyberattacks targeting IoT have… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 1471-1485, 2023, DOI:10.32604/csse.2023.034137
Abstract The Internet of Things (IoT) environment plays a crucial role in the design of smart environments. Security and privacy are the major challenging problems that exist in the design of IoT-enabled real-time environments. Security susceptibilities in IoT-based systems pose security threats which affect smart environment applications. Intrusion detection systems (IDS) can be used for IoT environments to mitigate IoT-related security attacks which use few security vulnerabilities. This paper introduces a modified garden balsan optimization-based machine learning model for intrusion detection (MGBO-MLID) in the IoT cloud environment. The presented MGBO-MLID technique focuses on the identification and classification of intrusions in the… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2119-2135, 2023, DOI:10.32604/cmc.2023.035077
Abstract In recent years, the Internet of Things (IoT) technology has developed by leaps and bounds. However, the large and heterogeneous network structure of IoT brings high management costs. In particular, the low cost of IoT devices exposes them to more serious security concerns. First, a convolutional neural network intrusion detection system for IoT devices is proposed. After cleaning and preprocessing the NSL-KDD dataset, this paper uses feature engineering methods to select appropriate features. Then, based on the combination of DCNN and machine learning, this paper designs a cloud-based loss function, which adopts a regularization method to prevent overfitting. The model… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.1, pp. 57-72, 2023, DOI:10.32604/csse.2023.034277
Abstract The Internet of things (IoT) is an emerging paradigm that integrates devices and services to collect real-time data from surroundings and process the information at a very high speed to make a decision. Despite several advantages, the resource-constrained and heterogeneous nature of IoT networks makes them a favorite target for cybercriminals. A single successful attempt of network intrusion can compromise the complete IoT network which can lead to unauthorized access to the valuable information of consumers and industries. To overcome the security challenges of IoT networks, this article proposes a lightweight deep autoencoder (DAE) based cyberattack detection framework. The proposed… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.1, pp. 819-834, 2023, DOI:10.32604/csse.2023.034095
Abstract Recently, the Internet of Things (IoT) has been used in various applications such as manufacturing, transportation, agriculture, and healthcare that can enhance efficiency and productivity via an intelligent management console remotely. With the increased use of Industrial IoT (IIoT) applications, the risk of brutal cyber-attacks also increased. This leads researchers worldwide to work on developing effective Intrusion Detection Systems (IDS) for IoT infrastructure against any malicious activities. Therefore, this paper provides effective IDS to detect and classify unpredicted and unpredictable severe attacks in contradiction to the IoT infrastructure. A comprehensive evaluation examined on a new available benchmark TON_IoT dataset is… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.1, pp. 491-504, 2023, DOI:10.32604/csse.2023.032107
Abstract Nowadays, web systems and servers are constantly at great risk from cyberattacks. This paper proposes a novel approach to detecting abnormal network traffic using a bidirectional long short-term memory (LSTM) network in combination with the ensemble learning technique. First, the binary classification module was used to detect the current abnormal flow. Then, the abnormal flows were fed into the multilayer classification module to identify the specific type of flow. In this research, a deep learning bidirectional LSTM model, in combination with the convolutional neural network and attention technique, was deployed to identify a specific attack. To solve the real-time intrusion-detecting… More >
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2129-2143, 2023, DOI:10.32604/iasc.2023.034381
Abstract Smart internet of things (IoT) devices are used to manage domestic and industrial energy needs using sustainable and renewable energy sources. Due to cyber infiltration and a lack of transparency, the traditional transaction process is inefficient, unsafe and expensive. Smart grid systems are now efficient, safe and transparent owing to the development of blockchain (BC) technology and its smart contract (SC) solution. In this study, federated learning extreme gradient boosting (FL-XGB) framework has been developed along with BC to learn the intrusion inside the smart energy system. FL is best suited for a decentralized BC-enabled system to adapt learning models… More >