Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Learning Noise-Assisted Robust Image Features for Fine-Grained Image Retrieval

    Vidit Kumar1,*, Hemant Petwal2, Ajay Krishan Gairola1, Pareshwar Prasad Barmola1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2711-2724, 2023, DOI:10.32604/csse.2023.032047 - 03 April 2023

    Abstract Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image. The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered, and dissimilar images are separated in the low embedding space. Previous works primarily focused on defining local structure loss functions like triplet loss, pairwise loss, etc. However, training via these approaches takes a long training time, and they have poor accuracy. Additionally, representations learned through it tend to… More >

Displaying 1-10 on page 1 of 1. Per Page