Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (509)
  • Open Access

    ARTICLE

    Cost and Time Optimization of Cloud Services in Arduino-Based Internet of Things Systems for Energy Applications

    Reza Nadimi1,*, Maryam Hashemi2, Koji Tokimatsu3

    Journal on Internet of Things, Vol.7, pp. 49-69, 2025, DOI:10.32604/jiot.2025.070822 - 30 September 2025

    Abstract Existing Internet of Things (IoT) systems that rely on Amazon Web Services (AWS) often encounter inefficiencies in data retrieval and high operational costs, especially when using DynamoDB for large-scale sensor data. These limitations hinder the scalability and responsiveness of applications such as remote energy monitoring systems. This research focuses on designing and developing an Arduino-based IoT system aimed at optimizing data transmission costs by concentrating on these services. The proposed method employs AWS Lambda functions with Amazon Relational Database Service (RDS) to facilitate the transmission of data collected from temperature and humidity sensors to the… More >

  • Open Access

    ARTICLE

    Towards a Real-Time Indoor Object Detection for Visually Impaired Users Using Raspberry Pi 4 and YOLOv11: A Feasibility Study

    Ayman Noor1,2, Hanan Almukhalfi1,2, Arthur Souza2,3, Talal H. Noor1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3085-3111, 2025, DOI:10.32604/cmes.2025.068393 - 30 September 2025

    Abstract People with visual impairments face substantial navigation difficulties in residential and unfamiliar indoor spaces. Neither canes nor verbal navigation systems possess adequate features to deliver real-time spatial awareness to users. This research work represents a feasibility study for the wearable IoT-based indoor object detection assistant system architecture that employs a real-time indoor object detection approach to help visually impaired users recognize indoor objects. The system architecture includes four main layers: Wearable Internet of Things (IoT), Network, Cloud, and Indoor Object Detection Layers. The wearable hardware prototype is assembled using a Raspberry Pi 4, while the… More >

  • Open Access

    ARTICLE

    Deep Auto-Encoder Based Intelligent and Secure Time Synchronization Protocol (iSTSP) for Security-Critical Time-Sensitive WSNs

    Ramadan Abdul-Rashid1, Mohd Amiruddin Abd Rahman1,*, Abdulaziz Yagoub Barnawi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3213-3250, 2025, DOI:10.32604/cmes.2025.066589 - 30 September 2025

    Abstract Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks (WSNs), especially in security-critical, time-sensitive applications. However, most existing protocols degrade substantially under malicious interference. We introduce iSTSP, an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust, precise synchronization even in hostile environments: (1) trust preprocessing that filters node participation using behavioral trust scoring; (2) anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time; (3) reliability-weighted consensus that prioritizes high-trust nodes during time aggregation; and (4) convergence-optimized synchronization… More >

  • Open Access

    ARTICLE

    A Dynamic Deceptive Defense Framework for Zero-Day Attacks in IIoT: Integrating Stackelberg Game and Multi-Agent Distributed Deep Deterministic Policy Gradient

    Shigen Shen1,2, Xiaojun Ji1,*, Yimeng Liu1

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3997-4021, 2025, DOI:10.32604/cmc.2025.069332 - 23 September 2025

    Abstract The Industrial Internet of Things (IIoT) is increasingly vulnerable to sophisticated cyber threats, particularly zero-day attacks that exploit unknown vulnerabilities and evade traditional security measures. To address this critical challenge, this paper proposes a dynamic defense framework named Zero-day-aware Stackelberg Game-based Multi-Agent Distributed Deep Deterministic Policy Gradient (ZSG-MAD3PG). The framework integrates Stackelberg game modeling with the Multi-Agent Distributed Deep Deterministic Policy Gradient (MAD3PG) algorithm and incorporates defensive deception (DD) strategies to achieve adaptive and efficient protection. While conventional methods typically incur considerable resource overhead and exhibit higher latency due to static or rigid defensive mechanisms,… More >

  • Open Access

    ARTICLE

    Real-Time Communication Driver for MPU Accelerometer Using Predictable Non-Blocking I2C Communication

    Valentin Stangaciu*, Mihai-Vladimir Ghimpau, Adrian-Gabriel Sztanarec

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3213-3229, 2025, DOI:10.32604/cmc.2025.068844 - 23 September 2025

    Abstract Along with process control, perception represents the main function performed by the Edge Layer of an Internet of Things (IoT) network. Many of these networks implement various applications where the response time does not represent an important parameter. However, in critical applications, this parameter represents a crucial aspect. One important sensing device used in IoT designs is the accelerometer. In most applications, the response time of the embedded driver software handling this device is generally not analysed and not taken into account. In this paper, we present the design and implementation of a predictable real-time More >

  • Open Access

    ARTICLE

    Blockchain and Smart Contracts: An Effective Approach for the Transaction Security & Privacy in Electronic Medical Records

    Amal Al-Rasheed1, Hashim Ali2,*, Rahim Khan2,*, Aamir Saeed3

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3419-3436, 2025, DOI:10.32604/cmc.2025.065156 - 23 September 2025

    Abstract In the domain of Electronic Medical Records (EMRs), emerging technologies are crucial to addressing longstanding concerns surrounding transaction security and patient privacy. This paper explores the integration of smart contracts and blockchain technology as a robust framework for securing sensitive healthcare data. By leveraging the decentralized and immutable nature of blockchain, the proposed approach ensures transparency, integrity, and traceability of EMR transactions, effectively mitigating risks of unauthorized access and data tampering. Smart contracts further enhance this framework by enabling the automation and enforcement of secure transactions, eliminating reliance on intermediaries and reducing the potential for… More >

  • Open Access

    ARTICLE

    MBID: A Scalable Multi-Tier Blockchain Architecture with Physics-Informed Neural Networks for Intrusion Detection in Large-Scale IoT Networks

    Saeed Ullah1, Junsheng Wu1,*, Mian Muhammad Kamal2, Heba G. Mohamed3, Muhammad Sheraz4, Teong Chee Chuah4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2647-2681, 2025, DOI:10.32604/cmes.2025.068849 - 31 August 2025

    Abstract The Internet of Things (IoT) ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027, operating in distributed networks with resource limitations and diverse system architectures. The current conventional intrusion detection systems (IDS) face scalability problems and trust-related issues, but blockchain-based solutions face limitations because of their low transaction throughput (Bitcoin: 7 TPS (Transactions Per Second), Ethereum: 15–30 TPS) and high latency. The research introduces MBID (Multi-Tier Blockchain Intrusion Detection) as a groundbreaking Multi-Tier Blockchain Intrusion Detection System with AI-Enhanced Detection, which… More >

  • Open Access

    REVIEW

    A Comprehensive Review on Urban Resilience via Fault-Tolerant IoT and Sensor Networks

    Hitesh Mohapatra*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 221-247, 2025, DOI:10.32604/cmc.2025.068338 - 29 August 2025

    Abstract Fault tolerance is essential for reliable and sustainable smart city infrastructure. Interconnected IoT systems must function under frequent faults, limited resources, and complex conditions. Existing research covers various fault-tolerant methods. However, current reviews often lack system-level critique and multidimensional analysis. This study provides a structured review of fault tolerance strategies across layered IoT architectures in smart cities. It evaluates fault detection, containment, and recovery techniques using specific metrics. These include fault visibility, propagation depth, containment score, and energy-resilience trade-offs. The analysis uses comparative tables, architecture-aware discussions, and conceptual plots. It investigates the impact of fault… More >

  • Open Access

    ARTICLE

    Unveiling CyberFortis: A Unified Security Framework for IIoT-SCADA Systems with SiamDQN-AE FusionNet and PopHydra Optimizer

    Kuncham Sreenivasa Rao1, Rajitha Kotoju2, B. Ramana Reddy3, Taher Al-Shehari4, Nasser A. Alsadhan5, Subhav Singh6,7,8, Shitharth Selvarajan9,10,11,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1899-1916, 2025, DOI:10.32604/cmc.2025.064728 - 29 August 2025

    Abstract Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things (SCADA-IIoT) systems against intruders has become essential since industrial control systems now oversee critical infrastructure, and cyber attackers more frequently target these systems. Due to their connection of physical assets with digital networks, SCADA-IIoT systems face substantial risks from multiple attack types, including Distributed Denial of Service (DDoS), spoofing, and more advanced intrusion methods. Previous research in this field faces challenges due to insufficient solutions, as current intrusion detection systems lack the necessary accuracy, scalability, and adaptability needed for IIoT environments. This paper introduces CyberFortis, a… More >

  • Open Access

    ARTICLE

    An IoT-Enabled Hybrid DRL-XAI Framework for Transparent Urban Water Management

    Qamar H. Naith1,*, H. Mancy2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 387-405, 2025, DOI:10.32604/cmes.2025.066917 - 31 July 2025

    Abstract Effective water distribution and transparency are threatened with being outrightly undermined unless the good name of urban infrastructure is maintained. With improved control systems in place to check leakage, variability of pressure, and conscientiousness of energy, issues that previously went unnoticed are now becoming recognized. This paper presents a grandiose hybrid framework that combines Multi-Agent Deep Reinforcement Learning (MADRL) with Shapley Additive Explanations (SHAP)-based Explainable AI (XAI) for adaptive and interpretable water resource management. In the methodology, the agents perform decentralized learning of the control policies for the pumps and valves based on the real-time… More >

Displaying 21-30 on page 3 of 509. Per Page