Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    An Adaptive Parameter-Free Optimal Number of Market Segments Estimation Algorithm Based on a New Internal Validity Index

    Jianfang Qi1, Yue Li1,3, Haibin Jin1, Jianying Feng1, Dong Tian1, Weisong Mu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 197-232, 2023, DOI:10.32604/cmes.2023.026113 - 23 April 2023

    Abstract An appropriate optimal number of market segments (ONS) estimation is essential for an enterprise to achieve successful market segmentation, but at present, there is a serious lack of attention to this issue in market segmentation. In our study, an independent adaptive ONS estimation method BWCON-NSDK-means++ is proposed by integrating a new internal validity index (IVI) Between-Within-Connectivity (BWCON) and a new stable clustering algorithm Natural-SDK-means++ (NSDK-means++) in a novel way. First, to complete the evaluation dimensions of the existing IVIs, we designed a connectivity formula based on the neighbor relationship and proposed the BWCON by integrating… More >

  • Open Access

    ARTICLE

    Internal Validity Index for Fuzzy Clustering Based on Relative Uncertainty

    Refik Tanju Sirmen1,*, Burak Berk Üstündağ2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2909-2926, 2022, DOI:10.32604/cmc.2022.023947 - 29 March 2022

    Abstract Unsupervised clustering and clustering validity are used as essential instruments of data analytics. Despite clustering being realized under uncertainty, validity indices do not deliver any quantitative evaluation of the uncertainties in the suggested partitionings. Also, validity measures may be biased towards the underlying clustering method. Moreover, neglecting a confidence requirement may result in over-partitioning. In the absence of an error estimate or a confidence parameter, probable clustering errors are forwarded to the later stages of the system. Whereas, having an uncertainty margin of the projected labeling can be very fruitful for many applications such as… More >

Displaying 1-10 on page 1 of 2. Per Page