Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    Influence of Resin Matrix Rigidity on the Ballistic Performance of PBO and Aramid Fiber Reinforced Composites

    Jia Liu, Yuwu Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011553

    Abstract The rigidity of the resin matrix is a critical factor affecting the impact resistance of composites [1]. However, the intrinsic relationship between resin matrix rigidity and ballistic performance remains insufficiently understood. To reveal the influence mechanisms of resin matrix rigidity on ballistic performance, this study compares the ballistic limits of PBO-140, PBO-200, Aramid III, and Aramid II fiber reinforced composites with resin matrices of different rigidities (epoxy resin, PX90, and PX30) through ballistic impact tests. The experimental results show that, the ballistic limit of composites with PX90 resin is higher than that of composites with… More >

  • Open Access

    ARTICLE

    Predominant Leptadenia pyrotechnica Alkali-Treated Fiber Composites: Characteristics Analysis

    Aruna M. Pugalenthi*, Khaoula Khlie

    Journal of Renewable Materials, Vol.12, No.11, pp. 1879-1893, 2024, DOI:10.32604/jrm.2024.055747 - 22 November 2024

    Abstract With growing environmental concerns and the depletion of oil reserves, the need to replace synthetic fibres with sustainable alternatives in composite materials has become increasingly urgent. This study investigates the potential of Leptadenia pyrotechnica fibre as a sustainable reinforcement material in hybrid composites alongside E-glass fibres. The primary objectives are to assess these hybrid composites’ mechanical properties, structural integrity, and performance. To achieve this, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were employed to analyze the microstructure and chemical composition of the composites. At the same time, mechanical testing focused on properties such… More >

  • Open Access

    ARTICLE

    Determination of the Cement Sheath Interface and the Causes of Failure in the Completion Stage of Gas Wells

    Xuesong Xing1, Renjun Xie1, Yi Wu1, Zhiqiang Wu1, Huanqiang Yang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1719-1735, 2022, DOI:10.32604/fdmp.2022.019799 - 27 June 2022

    Abstract

    The bonding quality of the cement sheath interface decreases during well completion because of the change in the casing pressure. To explore the root cause of such phenomena, experiments on the mechanical properties and interface bonding strength of a cement sheath have been carried out taking the LS25-1 high-temperature and high-pressure (HTHP) gas field as an example. Moreover, a constitutive model of the cement sheath has been defined and verified both by means of a full-scale HTHP cement sheath sealing integrity evaluation experiment and three-dimensional finite element simulations. The results show that the low initial cementing

    More >

Displaying 1-10 on page 1 of 3. Per Page