Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (202)
  • Open Access

    ARTICLE

    Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks

    Sk. A. Shezan*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073418 - 27 December 2025

    Abstract Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization. However, the high penetration of intermittent renewable sources often causes frequency deviations, voltage fluctuations, and poor reactive power coordination, posing serious challenges to grid stability. Conventional Interconnection Flow Controllers (IFCs) primarily regulate active power flow and fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks. To overcome these limitations, this study proposes an enhanced Interconnection Flow Controller (e-IFC) that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller (IRFC) within a unified adaptive… More >

  • Open Access

    ARTICLE

    Design and synthesis of diketopyrrolopyrrole-CdS hybrid nanostructures for enhanced photovoltaic applications

    Q. Fei1,*, B. Jin2, B. C. Jiang3, J. S. Huang4, L. Li5

    Chalcogenide Letters, Vol.22, No.8, pp. 693-705, 2025, DOI:10.15251/CL.2025.228.693

    Abstract An innovative hybrid nanostructure composed of diketopyrrolopyrrole (DPP) oligomers and cadmium sulfide (CdS) nanoparticles was developed to enhance the efficiency of organic– inorganic photovoltaic devices. The DPP-CdS hybrids were synthesized via a solution-phase mixing method, resulting in uniform nanoparticle dispersion along polymer fibrils and strong interfacial coupling. Structural characterization confirmed the coexistence of crystalline CdS domains and partially ordered DPP phases, while spectroscopic analyses indicated notable redshifts and band broadening, evidencing electronic interactions at the interface. The hybrid material displayed significantly broadened light absorption across the 400–700 nm range and an optimized optical bandgap of… More >

  • Open Access

    ARTICLE

    Emitter/Absorber Interface Design Strategies for Se Solar Cells

    Fan He1,2,3,*, Xu He4, Jie Wang1, Yu Hu5

    Chalcogenide Letters, Vol.22, No.11, pp. 939-949, 2025, DOI:10.15251/CL.2025.2211.939

    Abstract Selenium (Se) has garnered significant attention as a promising wide-bandgap material for photovoltaic applications. However, progress in enhancing the efficiency of Se solar cells remains limited. This study addresses this challenge by targeting the critical emitter/Se absorber interface for performance improvement. Through numerical simulations, we systematically investigate the impact of key interface properties—specifically, band alignment and defect characteristics—on device performance. Our results demonstrate that a slight positive conduction band offset (CBO) effectively strengthens absorber band bending and reduces hole concentration at the Se surface. Furthermore, minimizing interface defect density or incorporating donor-type defects significantly alleviates More >

  • Open Access

    ARTICLE

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

    Huaiqin Liu1, Meng Li1, Jianwen Shao2, Weishen Zhang1, Qifan Yang1, Yutong Li1, Tian Su1,3,*, Xuefeng Mei4

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1563-1588, 2025, DOI:10.32604/sdhm.2025.073009 - 17 November 2025

    Abstract Rock collapse is a significant geological disaster that poses a serious threat to life and property in mountainous regions worldwide. Investigating the response of protective structures to rockfall impacts can provide valuable references for the design and placement of such structures. In this study, RocPro3D and ABAQUS were employed to comprehensively analyze rockfall movement trajectories and the structural response upon impact. The results indicate that when the impact velocity of rockfall at the protective structure reaches 20–30 m/sec, the corresponding bounce height ranges from 5 to 8 m, and most rockfall accumulates at the slope More > Graphic Abstract

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

  • Open Access

    ARTICLE

    STPEIC: A Swin Transformer-Based Framework for Interpretable Post-Earthquake Structural Classification

    Xinrui Ma, Shizhi Chen*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1745-1767, 2025, DOI:10.32604/sdhm.2025.071148 - 17 November 2025

    Abstract The rapid and accurate assessment of structural damage following an earthquake is crucial for effective emergency response and post-disaster recovery. Traditional manual inspection methods are often slow, labor-intensive, and prone to human error. To address these challenges, this study proposes STPEIC (Swin Transformer-based Framework for Interpretable Post-Earthquake Structural Classification), an automated deep learning framework designed for analyzing post-earthquake images. STPEIC performs two key tasks: structural components classification and damage level classification. By leveraging the hierarchical attention mechanisms of the Swin Transformer (Shifted Window Transformer), the model achieves 85.4% accuracy in structural component classification and 85.1% More >

  • Open Access

    ARTICLE

    Reducing UI Complexity Using Use Case Analysis in Adaptive Interfaces

    Qing-Xing Qu1,*, Le Zhang2,*, Fu Guo1, Vincent G. Duffy3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4607-4627, 2025, DOI:10.32604/cmc.2025.069245 - 23 October 2025

    Abstract This study aims to validate the Object-Oriented User Interface Customization (OOUIC) framework by employing Use Case Analysis (UCA) to facilitate the development of adaptive User Interfaces (UIs). The OOUIC framework advocates for User-Centered Design (UCD) methodologies, including UCA, to systematically identify intricate user requirements and construct adaptive UIs tailored to diverse user needs. To operationalize this approach, thirty users of Product Lifecycle Management (PLM) systems were interviewed across six distinct use cases. Interview transcripts were subjected to deductive content analysis to classify UI objects systematically. Subsequently, adaptive UIs were developed for each use case, and… More >

  • Open Access

    ARTICLE

    Enhancing Ransomware Detection with Machine Learning Techniques and Effective API Integration

    Asad Iqbal1, Mehdi Hussain1,*, Qaiser Riaz1, Madiha Khalid1, Rafia Mumtaz1, Ki-Hyun Jung2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1693-1714, 2025, DOI:10.32604/cmc.2025.064260 - 29 August 2025

    Abstract Ransomware, particularly crypto-ransomware, remains a significant cybersecurity challenge, encrypting victim data and demanding a ransom, often leaving the data irretrievable even if payment is made. This study proposes an early detection approach to mitigate such threats by identifying ransomware activity before the encryption process begins. The approach employs a two-tiered approach: a signature-based method using hashing techniques to match known threats and a dynamic behavior-based analysis leveraging Cuckoo Sandbox and machine learning algorithms. A critical feature is the integration of the most effective Application Programming Interface call monitoring, which analyzes system-level interactions such as file More >

  • Open Access

    ARTICLE

    Dynamic Response of a Nonlocal Multiferroic Laminated Composite with Interface Stress Imperfections

    Hsin-Yi Kuo*, Li-Huan Yang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 841-872, 2025, DOI:10.32604/cmes.2025.065452 - 31 July 2025

    Abstract This study aims to investigate the propagation of harmonic waves in nonlocal magneto-electro-elastic (MEE) laminated composites with interface stress imperfections using an analytical approach. The pseudo-Stroh formulation and nonlocal theory proposed by Eringen were adopted to derive the propagator matrix for each layer. Both the propagator and interface matrices were formulated to determine the recursive fields. Subsequently, the dispersion equation was obtained by imposing traction-free and magneto-electric circuit open boundary conditions on the top and bottom surfaces of the plate. Dispersion curves, mode shapes, and natural frequencies were calculated for sandwich plates composed of BaTiO3 and More >

  • Open Access

    ARTICLE

    Sharp Interface Establishment through Slippery Fluid in Steady Exchange Flows under Stratification

    Mustafa Turkyilmazoglu1,2,*, Abdulaziz Alotaibi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2847-2865, 2025, DOI:10.32604/cmes.2025.068031 - 30 June 2025

    Abstract The variable salinity in stored reservoirs connected by a long channel attracts the attention of scientists worldwide, having applications in environmental and geophysical engineering. This study explores the impact of Navier slip conditions on exchange flows within a long channel connecting two large reservoirs of differing salinity. These horizontal density gradients drive the flow. We modify the recent one-dimensional theory, developed to avoid runaway stratification, to account for the presence of uniform slip walls. By adjusting the parameters of the horizontal density gradient based on the slip factor, we resolve analytically various flow regimes ranging… More >

  • Open Access

    ARTICLE

    Microscopic Modeling and Failure Mechanism Study of Fiber Reinforced Composites Embedded with Optical Fibers

    Lei Yang1,*, Jianfeng Wang1, Minjing Liu1, Chunyu Chen2, Zhanjun Wu3,4

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 265-279, 2025, DOI:10.32604/cmc.2025.065676 - 09 June 2025

    Abstract Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring. However, there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers, and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear. This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers. By constructing representative volume elements (RVEs) with randomly distributed reinforcing fibers, the optical fiber, the matrix, and the interface phase, the micromechanical behavior and damage evolution under transverse tensile and compressive… More >

Displaying 1-10 on page 1 of 202. Per Page