Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (207)
  • Open Access

    ARTICLE

    Impact of Window Layers on Selenium Distribution and Photovoltaic Performance in CdSexTe1−x/CdTe Solar Cells

    Junyan Tian1, Qingyuan Zhang1, Lili Wu1,2,*, Xia Hao1,2, Guanggen Zeng1, Wenwu Wang1, Jingquan Zhang1,2

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.076362 - 26 January 2026

    Abstract The incorporation of the Se element in CdTe solar cells is critical, while the low bandgap CdSexTe1−x, formed by the interdiffusion of CdTe and CdSe during device preparation, can promote the carrier lifetime. Different window layers formed by CdSe w/o MZO or CdS have different Se distributions. This paper systematically evaluates the influence of four types of window layers (CdSe, CdS/CdSe, MZO/CdSe and MZO/CdS/CdSe) on the performance of CdTe solar cells, and focuses on the correlation between the window layers and the Se distribution characteristic, carrier recombination mechanism, and device efficiency. The results show that CdSe… More >

  • Open Access

    ARTICLE

    Classification Method of Lower Limbs Motor Imagery Based on Functional Connectivity and Graph Convolutional Network

    Yang Liu, Qi Lu, Junjie Wu, Huaichang Yin, Shiwei Cheng*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070273 - 12 January 2026

    Abstract The development of brain-computer interfaces (BCI) based on motor imagery (MI) has greatly improved patients’ quality of life with movement disorders. The classification of upper limb MI has been widely studied and applied in many fields, including rehabilitation. However, the physiological representations of left and right lower limb movements are too close and activated deep in the cerebral cortex, making it difficult to distinguish their features. Therefore, classifying lower limbs motor imagery is more challenging. In this study, we propose a feature extraction method based on functional connectivity, which utilizes phase-locked values to construct a… More >

  • Open Access

    ARTICLE

    Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks

    Sk. A. Shezan*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073418 - 27 December 2025

    Abstract Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization. However, the high penetration of intermittent renewable sources often causes frequency deviations, voltage fluctuations, and poor reactive power coordination, posing serious challenges to grid stability. Conventional Interconnection Flow Controllers (IFCs) primarily regulate active power flow and fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks. To overcome these limitations, this study proposes an enhanced Interconnection Flow Controller (e-IFC) that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller (IRFC) within a unified adaptive… More >

  • Open Access

    PROCEEDINGS

    Rib Design of Fiber-Reinforced Polymer Reinforcement Bars and Study on Stick-Slip Friction at the Concrete Interface

    Quanzhou Yao*, Wenxin Chang, Lin Ye

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011903

    Abstract With the rapid advancement of global infrastructure development and the deepening of sustainable development principles, fiber-reinforced polymer (FRP) reinforcement bars have emerged as an innovative alternative to traditional steel reinforcement due to their lightweight, high-strength, corrosion resistance, and fatigue-resistant properties. However, the practical engineering application of FRP bars in concrete structures still faces critical challenges in optimizing the interfacial bond performance between the reinforcement and concrete. This study addresses the scientific bottleneck in rib height design for FRP bars by systematically investigating the evolution mechanism of fiber strain during the rib-forming process through theoretical analysis… More >

  • Open Access

    ARTICLE

    Time-Resolved Experimental Analysis of Granite–Mortar Interface Permeability under High-Temperature Conditions

    Wei Chen*, Yuanteng Zhao, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3033-3053, 2025, DOI:10.32604/fdmp.2025.073778 - 31 December 2025

    Abstract In deep underground engineering, geological disposal of nuclear waste, and geothermal development, the granite–mortar interface represents a critical weak zone that strongly influences sealing performance under high-temperature conditions. While previous studies have primarily focused on single materials, the dynamic evolution of interface permeability under thermal loading remains insufficiently understood. In this study, time-resolved gas permeability measurements under thermal cycling (20°C → 150°C → 20°C) were conducted, complemented by multi-scale microstructural characterization, to investigate the nonlinear evolution of permeability. Experimental results indicate that interface permeability at room temperature is approximately one order of magnitude higher than… More >

  • Open Access

    ARTICLE

    Design and synthesis of diketopyrrolopyrrole-CdS hybrid nanostructures for enhanced photovoltaic applications

    Q. Fei1,*, B. Jin2, B. C. Jiang3, J. S. Huang4, L. Li5

    Chalcogenide Letters, Vol.22, No.8, pp. 693-705, 2025, DOI:10.15251/CL.2025.228.693

    Abstract An innovative hybrid nanostructure composed of diketopyrrolopyrrole (DPP) oligomers and cadmium sulfide (CdS) nanoparticles was developed to enhance the efficiency of organic– inorganic photovoltaic devices. The DPP-CdS hybrids were synthesized via a solution-phase mixing method, resulting in uniform nanoparticle dispersion along polymer fibrils and strong interfacial coupling. Structural characterization confirmed the coexistence of crystalline CdS domains and partially ordered DPP phases, while spectroscopic analyses indicated notable redshifts and band broadening, evidencing electronic interactions at the interface. The hybrid material displayed significantly broadened light absorption across the 400–700 nm range and an optimized optical bandgap of… More >

  • Open Access

    ARTICLE

    Emitter/Absorber Interface Design Strategies for Se Solar Cells

    Fan He1,2,3,*, Xu He4, Jie Wang1, Yu Hu5

    Chalcogenide Letters, Vol.22, No.11, pp. 939-949, 2025, DOI:10.15251/CL.2025.2211.939

    Abstract Selenium (Se) has garnered significant attention as a promising wide-bandgap material for photovoltaic applications. However, progress in enhancing the efficiency of Se solar cells remains limited. This study addresses this challenge by targeting the critical emitter/Se absorber interface for performance improvement. Through numerical simulations, we systematically investigate the impact of key interface properties—specifically, band alignment and defect characteristics—on device performance. Our results demonstrate that a slight positive conduction band offset (CBO) effectively strengthens absorber band bending and reduces hole concentration at the Se surface. Furthermore, minimizing interface defect density or incorporating donor-type defects significantly alleviates More >

  • Open Access

    ARTICLE

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

    Huaiqin Liu1, Meng Li1, Jianwen Shao2, Weishen Zhang1, Qifan Yang1, Yutong Li1, Tian Su1,3,*, Xuefeng Mei4

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1563-1588, 2025, DOI:10.32604/sdhm.2025.073009 - 17 November 2025

    Abstract Rock collapse is a significant geological disaster that poses a serious threat to life and property in mountainous regions worldwide. Investigating the response of protective structures to rockfall impacts can provide valuable references for the design and placement of such structures. In this study, RocPro3D and ABAQUS were employed to comprehensively analyze rockfall movement trajectories and the structural response upon impact. The results indicate that when the impact velocity of rockfall at the protective structure reaches 20–30 m/sec, the corresponding bounce height ranges from 5 to 8 m, and most rockfall accumulates at the slope More > Graphic Abstract

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

  • Open Access

    ARTICLE

    STPEIC: A Swin Transformer-Based Framework for Interpretable Post-Earthquake Structural Classification

    Xinrui Ma, Shizhi Chen*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1745-1767, 2025, DOI:10.32604/sdhm.2025.071148 - 17 November 2025

    Abstract The rapid and accurate assessment of structural damage following an earthquake is crucial for effective emergency response and post-disaster recovery. Traditional manual inspection methods are often slow, labor-intensive, and prone to human error. To address these challenges, this study proposes STPEIC (Swin Transformer-based Framework for Interpretable Post-Earthquake Structural Classification), an automated deep learning framework designed for analyzing post-earthquake images. STPEIC performs two key tasks: structural components classification and damage level classification. By leveraging the hierarchical attention mechanisms of the Swin Transformer (Shifted Window Transformer), the model achieves 85.4% accuracy in structural component classification and 85.1% More >

  • Open Access

    ARTICLE

    Reducing UI Complexity Using Use Case Analysis in Adaptive Interfaces

    Qing-Xing Qu1,*, Le Zhang2,*, Fu Guo1, Vincent G. Duffy3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4607-4627, 2025, DOI:10.32604/cmc.2025.069245 - 23 October 2025

    Abstract This study aims to validate the Object-Oriented User Interface Customization (OOUIC) framework by employing Use Case Analysis (UCA) to facilitate the development of adaptive User Interfaces (UIs). The OOUIC framework advocates for User-Centered Design (UCD) methodologies, including UCA, to systematically identify intricate user requirements and construct adaptive UIs tailored to diverse user needs. To operationalize this approach, thirty users of Product Lifecycle Management (PLM) systems were interviewed across six distinct use cases. Interview transcripts were subjected to deductive content analysis to classify UI objects systematically. Subsequently, adaptive UIs were developed for each use case, and… More >

Displaying 1-10 on page 1 of 207. Per Page